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ABSTRACT 
 

As some Big Data Computing (BDC) workloads are increasing in computational intensity (traditionally an 
HPC trait) and some High Performance Computing (HPC) workloads are stepping up data intensity 
(traditionally a BDC trait), there is a clear trend towards innovative approaches that will create significant 
value by adopting certain techniques of the other. This is akin to a form of “transfer learning” or “gene 
splicing” - where specific BDC techniques are infused into the HPC stack and vice-versa. This document is 
intended to inform the discussion regarding current strengths and differences between the (software and 
hardware) stacks of BDC and HPC, and how the current strengths of one stack may address a 
shortcoming/need in the other stack. This paper reflects an under-taking between two distinct ecosystems - 
the European associations for HPC (www.ETP4HPC.eu) and Big Data Value (www.BDVA.eu).  
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1.0 INTRODUCTION 
 

To aid consistent interpretability across High Performance Computing (HPC) and Big Data Computing (BDC) 
ecosystems, key concepts need to be explicitly explored upfront before addressing the potential of cross 
stack transfer learning opportunities. We begin by examining the top-level characteristics and objectives 
for both HPC and BDC stacks (and extending this to related workloads of Machine Learning (ML) and High 
Performance Data Analytics (HPDA)).  

 
HPC (High Performance Computing) in this paper 
refers to modelling and simulation workloads from 
science, industry, public decision making and commerce 
perspectives that require extreme amounts of 
computation and a class of highly tuned stacks that 
provide scalable compute and local communication 
capabilities that far surpass hardware capabilities of 
a single server and can take on the afore mentioned 
workloads. Typically executed on ultra-fast, high-
capacity “scale up” architecture. Classic HPC modelling and simulation seeks to represent the dynamics of a 
system based on a mathematical model for that system, which is usually derived from scientific or 
engineering laws. HPC focuses on interaction amongst parts of a system and the system as a whole. For 
example, weather modelling will take initial conditions (such as historical temperatures, estimates of energy 
input from the sun, and so on) as an input. Then, using a commonly accepted model about the causal 
interactions between these variables (captured in equations and code), it will produce forecasts of the 
weather in, e.g. five days. It is also possible to invert the process – here, the forecasts are compared with 
the actual weather, and conclusions are drawn about the original model assumptions. The relationship 
between modelling and simulation relates to level of abstraction and accuracy – abstraction decreases 
while accuracy increases moving from models to simulations1. Major HPC application areas include 
biochemistry (e.g. protein behaviours), chemistry (e.g. materials), physics (e.g. astrophysics), environment 
(e.g. weather), and industry (e.g. design and prototyping). 

 
Big Data Computing (BDC) is the process of collecting, 
organising and analysing large sets of data (called 
Big Data). Big Data typically means datasets (both 
structured and unstructured) possessing data volume, 
velocity and variety characteristics, which are so large 
it is difficult to process using traditional database and 
software techniques. Big Data can be captured from 
any number of sources (e.g. web activity, business 
operations, customer contact centre, social media, 
mobile data, machine-to-machine data, and so on), 
then it is typically formatted, manipulated, stored and finally analysed to gain useful insights i.e. building a 
representation, query, or model that enables descriptive, interactive or predictive analysis for insights and 
value. 
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Machine Learning (ML) workloads (straddles the 
disciplines of Artificial Intelligence (AI) and Big Data 
Computing) are of particular interest regarding the 
intersection between HPC and BDC. ML uses computer-
implementations of mathematical algorithms that can 
classify data, extract features or create insights. 
Traditional ML is most suitable where feature 
extraction2 of data is tractable. A subfield within ML is 
the rapidly evolving Deep Learning (DL) (algorithms 
inspired by neural networks with multiple layers of 
neurons that learn successively complex 
representations) to implicitly recognise properties of 
sounds, images, and other data in a training phase, 
and then make predictions on new data sets (i.e. 
inferencing). DL is most useful in cases where feature 
extraction using classical machine learning is intractable, or where the underlying features are not a priori 
known. The rise in popularity of DL is due to the explosion in data generation/storage and vast 
improvements in available compute performance. Major application areas include statistical analysis, 
search, planning, classification and clustering, imaging and vision, natural language processing, and machine 
reasoning.  

Another rapidly evolving field that increasingly draws from the domains of HPC and BDC is High 
Performance Data Analytics (HPDA) – which pursues extreme data analytics at scale and in a manner that 
is sensitive to the trade-offs between the timely consumption of computational resources and the practical 
value of the predictions obtained. Demands for HPDA originate from the need for extremely fast analysis 
results (e.g. real-time high-frequency analysis), extreme problem complexity requiring high capability 
analytics (e.g. those found in large-scale scientific research and industrial settings), and where patterns or 
insights are of an extremely valuable nature (e.g. economic, scientific or social).  

The remainder of this paper deals primarily with the domains of HPC and Big Data Computing (Machine 
Learning and High Performance Analytics representing states between both are highlighted when 
appropriate). The paper is structured as follows: overview of respective stacks, workloads characteristics of 
each stack, stack segregation and profiling, cross stack transfer learnings, and conclusions. (The needs of 
respective stacks will be broader than what this paper covers, as this paper confines itself to how the 
current capability strengths of one stack may address a shortcoming/need in the other stack). 
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2.0 STACK OVERVIEWS 
 

Be it on a leadership class supercomputer, small institutional cluster, or in the Cloud – HPC and Big Data 
Computing (BDC) stacks traditionally have distinct features, characteristics and capabilities.  

 
HPC stacks are designed for modelling and simulation workloads which are compute intense, and focus on 
the interaction amongst parts of a system and the system as a whole. Typical application areas include 
physics, biology, chemistry, and Computer Aided Engineering (CAE). HPC targets extremely large amounts 
of compute operations, which often operate on large sets of data and are executed in parallel on 
potentially high number of compute nodes. Data is usually partitioned 
between the nodes, and any data sharing is effected by message exchanges 
over a high-speed interconnect between the nodes. HPC applications are 
usually iterative and closely coupled – the underlying mathematical models 
do cause dependencies between the data blocks owned by different nodes, 
and this requires frequent communication of data updates (usually of lower-
dimensional parts of blocks) between the nodes. As a consequence, the 
interconnect fabric has to be very fast in terms of bandwidth and latency, 
essentially turning the entire set of nodes into one single “supercomputer”. This requires expensive high 
performance hardware, i.e. high floating-point processing power and very fast (in terms of both latency 
and bandwidth) network fabric between the nodes. A HPC application operates as a closely coupled and 
synchronised over many nodes (up to hundreds of thousands) and accesses the data on a storage entity that 
is attached via the fast network to all the nodes. In effect, such applications use large parts of the system in 
“exclusive mode”.  

 
Big Data Computing stacks are designed for analytics workloads which are data intense, and focus on 
inferring new insights from big data sets. Typical application areas include search, data streaming, data 
preconditioning, and pattern recognition. In the case of a Hadoop-type architecture3 (which is one of the 
more prevalent ecosystems in Big Data Computing), the data set can be divided into multiple independent 
sub-problems (i.e. “embarrassingly parallel problems”4) and those sub-
problems can be solved by multiple “simple” nodes without need for 
significant communication between processes during the “map” step. Only the 
“reduce” step requires bringing the results of parallelised parts together. As 
the problem size increases, the number of the sub-problems increases 
accordingly. And as the number of sub-problems grows, the number of simple 
nodes to solve them also rises. For these architectures, the power lies in 
having a huge number of relatively simple nodes (rather than highly tuned 
nodes as for HPC), which do not have to be tightly coupled. Several 
applications (or, instances of the same application) run simultaneously on multiple nodes (i.e. opposite to HPC 
where a single application uses all the nodes in the cluster). Common practices today highlight that HPC uses 
Batch Queuing system while BDC uses interactive python interfaces – although this difference is diminishing 
with introduction of newer HPC workloads.  

So in case of HPC workloads we are deploying a single large supercomputer to solve the entire problem. 
Adding more nodes for running the same problem (“strong scaling”) will initially reduce runtime, yet at a 
diminishing rate due to the relative increase in communication and coordination overheads, and will later 

HPC APPLICATIONS 
ARE USUALLY 
ITERATIVE AND 
CLOSELY COUPLED 

THE DATA SET CAN 
BE DIVIDED INTO 
MULTIPLE 
INDEPENDENT SUB-
PROBLEMS 
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even increase runtime again. To achieve good strong scaling, the performance of the interconnect fabric 
also has to be improved. In the second case (i.e. BDC), just adding more simple modes will reduce the 
amount of work per node, and since much less communication is required between the nodes, also continue 
to reduce the runtime. Figure 1 illustrates these conceptual differences. High Performance Data Analytics 
(HPDA) and Machine Learning (ML) inference will look largely like conventional BDC “on steroids”, that is 
running on large numbers of fast nodes. While current practice in ML training is to use multiple, 
interconnected accelerators in a single node. For the latter, strong scaling across multiple nodes is a R&D 
topic, which will result in HPC-like closely coupled training workloads, most likely each running on 
comparatively small numbers of nodes.  

 

Figure 1: Overviews of HPC and Big Data Computing (Hadoop-type Cloud) architectures  
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3.0 STACK WORKLOADS  
 

So far we have examined rather high-level differences between how HPC and Big Data Computing stacks 
are architected. A closer analysis of the respective application/workload requirements teases out further 
differences, including  

• Interconnect sensitivity: Some applications require very fast interconnects5 i.e. low latency and high 
throughput (e.g. Infiniband-class fabrics or High-Performance Ethernet). To minimise software overheads, 
these interconnects often leverage user-space6 communication pathways that bypass the Operating 
System kernel and avoid context switches and buffer copies. This makes the use of a Cloud-type 
architecture very difficult because most virtualisation schemes do not support such a “kernel bypass”. If 
high-performance interconnects are not available, the application may run slowly and get no 
performance gain when adding more nodes i.e. suffers from poor scalability. There are 
applications/workloads that are highly scalable or "embarrassingly parallel" (e.g. image rendering) 
and there are those that are difficult to scale, which we will call "interconnect sensitive" (e.g. 
computational mechanics). HPC workloads that have moved to Big Data Cloud-type stacks are typically 
embarrassingly parallel i.e. do not communicate frequently or with high data volumes between threads 
and cores, and therefore do not require a high-performance interconnect.  

• I/O sensitivity: I/O-sensitive applications without a very fast I/O subsystem will run slowly because of 
storage bottlenecks, i.e. because computation will be waiting to read or write data. To avoid these 
bottlenecks, technologies such as optimised Networked Attached Storage - NAS, distributed file systems, 
parallel file systems, or fast storage media such as solid-state drives (SSDs), can drastically increase the 
I/O bandwidth of computing nodes. A significant difference between HPC and Hadoop-type Big Data 
Computing stacks (Map/Reduce, Spark, Flink or other) is that HPC codes tend to generate significant 
amounts of results data that have to be stored without impeding the computation. This holds in particular 
for applications simulating the time-dependent behaviour of a complex phenomenon (like the weather) 
or artefact (like a rocket engine). I/O subsystems for large HPC computers are usually designed to 
support such use cases.  In contrast, I/O subsystems for Big Data Computing stacks are usually designed 
to ingest the highest volumes, variety and velocity of data, and depending on the exact application, 
store significantly smaller results relatively to HPC I/O subsystems i.e. HPC generates relatively larger 
volumes of output data (i.e. insights) relative to its data inputs, whilst BDC generates relatively smaller 
volumes of output data (i.e. insights) relatively to its data inputs. 

• Compute sensitivity: Specialised hardware, i.e. performance accelerators, can give a significant boost 
to certain workloads, depending on the algorithms used. Optimised libraries are often required for the 
workloads to fully leverage hardware capabilities and performance. For instance, the dominance of 
dense linear algebra kernels plus the opportunity to use lower precision representation and arithmetic is 
the reason why accelerator hardware is extremely useful for Deep Learning training workloads. A 
typical example is the use of multiple general-purpose GPU (GPGPU) accelerators in a single server 
node to reduce training time to acceptable levels. Overall, the class of problems being addressed is that 
of very high-order optimisation problems – it is thus natural that Deep Learning workloads have entered 
the realm of high-performance computing. That is, the forefront of Deep Learning research is now 
looking at scaling Deep Learning training out across nodes – an approach that uses a core HPC 
discipline (i.e. scalable dense linear algebra). 
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Both HPC and Big Data Computing stack workloads can be affected by load imbalances caused by a 
variety of reasons. For example, differences in computational or I/O load across nodes, contention and 
congestion in the use of shared resources (like network links or storage targets), and different performance 
characteristics across nodes. Such imbalances can severely limit workload scalability – i.e. performance does 
no longer increase commensurate to the number of nodes used by an application.  

We can observe that HPC and Big Data Computing workload types have affinity towards the capabilities 
offered by discrete stack architectures and hardware. Table 1 presents a summary, and is extended to 
include ML and HPDA workloads.  

Table 1: Summary of Workload Sensitivities to their Underlying Resources 

 Classical HPC 
Workload 

Typical Big Data 
Workload 

ML    Workload HPDA 
Workload 

Interconnect sensitivity  High [+] Depends [+/-] Depends [+/-] High [+] 
IO sensitivity  Depends [+/-] Depends [+/-] Depends [+/-] High [+] 

Compute Sensitivity  High [+] Low [-] High [+] High [+] 
 

 
 
To appreciate this in more detail, we must dive deeper into the individual characteristics and 
composition of these respective stacks. 

 

4.0 STACK PROFILES  
 

Figure 2 offers a more fine grained exploration of the respective stacks – presenting a disaggregated 
profile view for the Supercomputing, Big Data Computing and Deep Learning stacks. We use the term 
Supercomputing here to denote a specific implementation of HPC, however, many aspects will also apply to 
institutional clusters. Deep Learning is a Big Data Computing workload that readily stands to benefit from 
HPC’s experience due to its reliance on (dense) linear algebra, hence we examine it in more detail at this 
point. Deep Learning (aka artificial neural networks) algorithms typically scale well to produce increasingly 
better results where larger models can be fed with more data (i.e. Big Data), this in turn requires more 
computation to train (i.e. more compute is required) – typically using hand-crafted tuning of deep neural 
networks.  

High Performance Data Analytics (HPDA) is not represented in Figure 2 – however architecture-wise, it is 
close to the BDC column with the Server and Network layers from the HPC column and potentially selected, 
more highly performant communication and I/O services.  This “breed” of stack can bring performance and 
efficiency improvements for large-scale BDC problems, and it could open the door to tackling data 
analytics problems with inherent dependencies between nodes. 
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Using Figure 2 as a backdrop, some notable observations which can be illuminated across the three 
stacks include: 

4.1 Supercomputing  

Traditionally designed for minimum time-to-solution across a wide range of 
computationally intensive simulation tasks in various fields e.g. climate 
modelling, physics simulation, molecular modelling, structural modelling and 
so forth. Design principles for infrastructure and software are typically 
optimised for performance (i.e. FLOP/s7) first – (i.e. devotes most of its execution time to computation), then 
for minimal cost (e.g. energy management – FLOP/s per watt).  

• Communication: Applications are usually iterative (i.e. repeating computation and communication 
patterns) and require significant communication and coordination between nodes. For performance 
reasons, this necessitates the use of scalable and high performance (latency and bandwidth) interconnect 
fabrics. Also, user-space access to the interconnect fabric is important for performance.  

• Compute: Use of dedicated compute engines (processing mostly floating point calculations) often with 
accelerators attached. 

• Storage: HPC storage is often designed for a specific application set and user base. This requires use of 
dedicated parallel file system middleware (Lustre, GPFS, etc) conforming to POSIX semantics and 
dedicated file servers. I/O libraries are used to encapsulate data formats and their organisation. HPC 
relies on System Authentication Authorisation Accounting (AAA) and protections implemented by 
the parallel file systems (PFS) and operating system (OS) layers, e.g. file access controls. HPC 
applications partition the data with the amount of “shared data” being relatively small, and storage 
systems are optimised to quickly provide access to each node’s block of data.   

• OS: Linux is the most common OS in use, with container virtualisation gaining presence. To minimise 
latency and maximise bandwidth, HPC applications often need to bypass the OS kernel and 
communicate directly with remote user processes. Optimised HPC libraries and applications work closely 
with a given hardware architecture to achieve maximum performance, thus requiring specific OS drivers 
and hardware support. (This is in contrast to Big Data Computing applications which tend to rely on a 
middleware layer i.e. tend to be agnostic of the details of the underlying system, so long as 
performance is - relatively speaking - satisfactory). For the most part, VM/Hypervisor style virtualisation 
is mostly not considered – due to concerns about performance loss by the extra levels of indirection and 
software involved. 

• Scheduling & Workflows: Most HPC systems use a batch scheduler to administer use of shared, limited 
resources and ensure high system throughput. User jobs must wait until the required set of resources 
becomes available (resources are not directly managed by the user). This requires specific cluster 
management techniques that handle creation, provisioning and management of large system partitions 
(from tens to hundreds-of-thousands of nodes) used to run individual HPC applications. (This is a 
significant difference to “scheduling” in Big Data Computing and Deep Learning – makes it more difficult 
to complete interactive work. HPC has limited hardware redundancy; if nodes supporting a HPC 
application fail – the application eventually fails. Therefore, applications need to periodically save their 
application state (e.g. check-pointing) to guard against losing a lot of work.) This is very different to 

MINIMUM TIME-TO-
SOLUTION 
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“redundancy” for Big Data Computing applications (see ‘Scheduling & Workflows’ in following BDC 
section). 

• Processing: HPC systems run tightly coupled applications on hundreds to tens-of-thousands of nodes in 
exclusive mode, using compiled languages, numerical libraries, accelerator APIs8, threading and high-
performance messaging (MPI, GASPI) layers - scripting languages like Python are gaining presence. 
There is limited use of higher level frameworks and IDEs9 – a canonical example is PETSc for PDEs and 
ODEs. Applications are typically compiled into binaries and distributed and executed in a classical way, 
i.e. started and controlled by the OS on a constant set of resources. Accessing HPC applications via 
Cloud interfaces is emerging.  

• Analytics: analysis of input and of results data makes use of statistical and domain-specific, descriptive 
data analysis, plus performance and fault diagnostics.  

• Interaction Services: HPC workloads use advanced 3D, interactive visualisation for results presentation 
and computational steering10. Outside of this, the defaults are methods like remote desktop and SSL. 
Uptake of Web/Cloud access methods remains limited. 

4.2 Big Data Computing 

Big Data Computing stacks are traditionally designed to economically ingest, 
store and analyse massive volumes and varieties of data at speed (i.e. 
velocity). Design principles for infrastructure and software are typically 
optimised for cost effectiveness (i.e. storage IOP/s11/Euro) first - i.e. devotes 
most of its processing time to I/O and manipulation of data, then for 
maximum performance (e.g. data-ingestion, -processing, -persistence, -
analytics). For the most part, Big Data Computing stacks are generally run on a Cloud type environment, 
therefore this paper examines it from that perspective.  

• Communication: Applications typically are non-iterative, requiring minimal communication or 
coordination between nodes (during the Map phase of a Map/Reduce application). Ethernet use is 
prevalent, being generally viewed as cost efficient and providing “satisfactory” performance for most 
workloads. 

• Compute: Nodes (processing mostly integer12 or byte/string operations13) are “hyper-convergent” i.e. 
one kind of node fulfils all functions (compute, data storage, access) and accelerators can include field-
programmable gate array (FPGA) processors (to accelerate a simple, repetitive task, like pattern 
matching). 

• Storage: BDC uses a multitude of storage systems, including distributed file systems/parallel file systems, 
key/value stores, object stores, on hyper-convergent or dedicated infrastructure. Two application 
patterns are prevalent, namely Map/Reduce and Data Streaming, with frameworks for each. 

• OS: Virtualisation (hypervisor and container virtualisation) and Virtual Machine Monitors (VMMs) are 
prevalent. In this environment, more resources are created by adding (if the underlying hardware 
resources are already present) more virtual machines (OS instances). Users can design personalised 
software environments and scale their "instances" to suit their needs. Instances can be easily moved to 
and from similar Cloud setups. The user, for the most part, does not care (or control) on which exact 

ECONOMICALLY 
INGEST, STORE AND 
ANALYSE 
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hardware their Big Data Computing applications run on. (This is a contrast to HPC workloads, which is 
typically tuned to run on specific hardware architectures.) 

• Scheduling & Workflows: Big Data Computing running in the Cloud offers almost instantaneous access 
to data or compute resources (whereas in an HPC system, the queuing system might impose a significant 
wait). Big Data Computing applications are usually complex workflows, therefore distributed 
coordination is important. Orchestration and resource management/scheduling is fine-grained (at a level 
of nodes, i.e. not in large partitions as in the case of HPC). Failing nodes in this (Map/Reduce) context 
can simply re-run the failed tasks on replacement nodes. (This is a significant difference to how HPC 
redundancy is handled. C++ plays a role, but scripting or interpreted languages are widely used.) 

• Processing: BDC typically runs large workflows (often expressed as task graphs14), with each step 
running on (part of) a node. Users are guaranteed a certain minimal level of performance according to 
a Service Level Agreement (SLA). 

• Analytics: In Big Data Computing, the data analytics leverages the full spectrum of statistical (averages, 
trends, correlations, causalities, etc.) and Machine Learning (clustering, modelling, decision trees and rule 
systems, graph analytics15, spatio-temporal16) analysis methods. Machine Learning (outside of Deep 
Learning, see next section) is still the predominant usage model.  

• Interaction services: Users of Big Data Computing applications mainly rely on service-based techniques 
to interact with Cloud infrastructures. Algorithms typically produce numerical output, such as a 
classification or score, and can utilise interactive 2D and 3D visualisation techniques for an exploration 
of results.  

4.3 Deep Learning 

Traditionally designed to expedite training and inference of models that will 
minimise training errors when applied to test/validation datasets. Design 
principles for infrastructure and software are typically optimised for 
reduced-precision calculations (floating or fixed point for training, floating 
point or integer for inference), and storage IOP/s for performing irregular accesses in storage when 
working with unstructured data. More recently, distributed scaling of Deep Learning training performance is 
aiming for network performance to match the Flop/s available on the nodes.  

• Communications: Fabric is predominantly Ethernet (with current R&D looking at scale-out over high-
performance fabrics for model training17).  

• Compute: Use of dedicated compute nodes with many (reduced-precision) accelerators attached, 
integrated into a flexible data centre architecture - similar to Big Data Computing today yet there is 
significant ongoing research into using multiple nodes and fast inter-node communication. Parallelism and 
scalability (as well as floating-point performance) are key to finding the model that accurately 
represents the training data quickly with a low error. For scale-out, Deep Learning is investigating HPC-
style interconnects. 

• Storage: Data stores are typically the same as for Big Data Computing discussed previously.  

• OS: Usually same as for Big Data Computing, however efficient user-space access to accelerators is key. 

EXPEDITE TRAINING 
AND INFERENCE 
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• Scheduling & Workflows: Using the same techniques as for Big Data Computing, with Deep Learning 
training and inference embedded in workflows. At a lower level, Deep Learning inference uses load 
balancers to distribute queries across nodes in a uniform way, and Deep Learning training tightly 
controls the progress of the training across the assigned resources. Deep Learning inference18 is a step in 
a large Cloud or Big Data workflow, and training can be run stand-alone or also as part of a workflow. 

• Processing: Deep Learning training/inference steps are typically based on a multitude of higher-level 
frameworks (with a rather high frequency of change) e.g. Caffe, Tensorflow, Theano as some of the 
more prevalent ones (at the time of writing). Use of numerical libraries (such as 
DGEMM/SGEMM/IGEMM) is key to achieve high compute performance, accelerating gradient descent 
and “tensor” data manipulation. Numerical algorithms like Fast Fourier Transforms (FFTs)19 will likely 
become more important in the future. Training runs computationally intensive codes on “fat” nodes (i.e. 
lots of cores, disk, and memory), and is looking to scale this o a moderate number (hundreds) of nodes. 
Domain-specific messaging layers are emerging (Intel Machine Learning Scaling Library, etc.). 
Inferencing uses much less compute and communication, and is regularly performed at reduced precision 
(FP16 or INT16, 8-bit, sometimes even less).  

• Analytics: Algorithms are self-directed (for the most part) on the data analysis once put in to 
production, using artificial neural networks that pass data through many processing layers to interpret 
data features and relationships i.e. the many hidden or computational layers between the input neurons, 
where data is presented for training or inference, and the output neuron layer where the numerical 
inference results can be read.  

• Interaction services:  Deep learning outputs include identifying patterns, recognising objects, 
understanding concepts, natural-language processing, etc., and uses mostly 2D visualisation in the 
frameworks and Web/Cloud access mechanisms (internally most frameworks use object orientated 
languages - like python). 
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5.0 CROSS STACK TRANSFER LEARNINGS 
 

 The prior sections till now provide an appreciation of 
the main differences and similarities of the respective 
stacks, this provides necessary context as we now 
consider how the capabilities present in either HPC or 
Big Data Computing stacks may benefit the other.  It is 
worth restating at this point that the needs of each 
stack will be broader than what this paper covers, as 
this paper confines itself to how the current capability 
strengths of one stack may address a 
shortcoming/need in the other stack.   

5.1 What Big Data Computing can Learn from HPC 

Big Data Computing applications are expected to move towards more compute-intensive algorithms to reap 
deeper insights across descriptive (explaining what is happening), diagnostics (explaining why it happened), 
prognostics (predicting what can happen) and prescriptive (proactive handling) analysis. HPC capabilities 
are expected to be of assistance to faster decision making across more complex data sets. 

As already mentioned, Deep Learning and automated deep neural network design creation are workloads 
that readily stand to benefit from HPC’s experience in optimising and parallelising difficult optimisation 
algorithms problems20. Major requirements include highly scalable performance, high memory bandwidth, 
low power consumption, and excellent reduced precision arithmetic performance. 

 
Some specific challenges include: 

• Fast interconnects: more bandwidth within the node (PCI Express evolution or alternatives), faster 
communication between nodes for both local and global communication schemes, in particular for the 
distributed gradient descent at the heart of Deep Learning training. 

• More efficient algorithms for linear algebra: model compression and moving from dense matrix to 
sparse data structures leveraging sparse linear algebra (matrix-matrix and matrix-vector arithmetic). 

• Low precision data representation and arithmetic: Deep Learning algorithms usually work well at low 
precision (training for 16-bit floating point, inference for even lower precision up to 8-bit and below), 
depending on the exact network. Today’s requisite computational resources are clusters whose nodes 
are populated with a sufficient number of accelerators. These provide the needed performance while 
keeping power consumption low, and will also reduce the amount of data to be communicated between 
nodes. A challenge is to know a priori how small the key data structures can be for the specific network 
to continue working. 

• Introduction of new hardware capabilities: For example, FPGA or dedicated Deep Learning 
processors will require optimisation of software layers. For non-van-Neumann computing architectures 
(like Quantum or Neuromorphic), further research is required to evaluate applicability. 
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• Efficient distributed data access (using parallel data stores): modifying Deep Learning algorithms to 
reduce the total amount of communication between nodes in a scale out cluster. 

• High energy efficiency: it highly likely that research results achieved in the HPC ecosystem will be 
beneficial e.g. the use of minimal precision and compression for the recursive gradient descent (or of less 
communication-intense communication) methods in Deep Learning. 

• Multi-level, tiered architectures: integration between accelerators, CPUs, high-performance fabrics and 
I/O that combines best-of-breed technical capabilities.  

• Hybrid architectures: creating the best-matching hybrid architecture to optimise - at scale - across 
training and inference to serve the most extreme/challenging data analytics scenarios, and be 
appropriate for large-scale system deployments to synergistically utilise centre (HPC) and edge 
(IoT/Cyber-physical Systems) stacks.  

5.2 What HPC can Learn from Big Data Computing 

HPC is now generating models of unprecedented realism and accuracy. At the most extreme, these models 
represent the real world using trillions of discrete degrees of freedom, which require huge memory and 
compute performance on extremely large (typically scale-out) systems. These simulations generate enormous 
amounts of output data. Researchers need to apply advanced and highly complex analytics and processing 
(including visualisation) to this data to generate insights, which means that off-loading to remote platforms is 
simply not an option. Thus, data analytics needs to take place in-situ, and perhaps in close coordination with 
tightly coupled synergistic computing platforms (e.g. visualisation engines). These investigations will have 
important ecosystem benefits for multi-scale, multi-physics coupled applications, where instances are running 
on tens to hundreds-of-thousands of nodes.  

Therefore, analytics is expected to become a fully-fledged software component of the HPC ecosystem to 
process the massive results of large numerical simulations or to feed numerical models with complex data 
produced by scientific and industrial instruments/systems (e.g. telescope, satellite, sequencers, particle 
accelerators, etc) or by large scale systems of systems (e.g. edge devices, smart sensors, IoT devices, cyber-
physical systems, etc).  

In addition, HPC simulations could profit significantly from iterative refinements of their underlying models 
effected by advanced data analytics tools and machine learning techniques, e.g. by accelerated 
convergence. HPC can also benefit from Big Data management approaches, especially in the case of 
dynamic scenarios (Big Data Computing is much more flexible with the notions of data at rest, data on 
move, data in change). 

 
Some specific challenges include: 

• Data stream processing: Streaming capabilities are becoming increasingly important for scientific and 
industrial HPC applications (e.g. CERN’s Large Hadron Collider (LHC), Square Kilometre Array (SKA) 
project, astrophysics, physical simulations, digital twins, etc) supporting important needs such as the 
ability to act on incoming data and computational steering. For example, supporting the processing of 
high data rate streams, e.g. predictions and outlier detection algorithms on it, while running larger 
models in batch mode on the entire dataset, is a challenging task. Coupling data streams produced by 
such experiments to computational HPC capabilities is an important challenge, and Big Data Computing’s 
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near real-time processing architectures and stream processing capabilities hold promise i.e. to rapidly 
analyse high-bandwidth, high-throughput streaming data. However, they require enhancements across 
infrastructure (e.g. delivery guarantees, low latencies, varying data rates, storage for flexible streaming 
and batch processing), abstractions (e.g. decouple application concerns from streaming infrastructures) 
and applications (e.g. adaptation of batch algorithms for inclusion of data steaming into their current 
state) to accommodate the massive bandwidth requirements of these scientific and industrial HPC 
applications.  

• In situ/in transit processing: Traditionally, in the HPC area, datasets resulting from scientific simulations 
are typically shipped to some auxiliary post-processing platforms for offline visualisation, processing 
and analysis, which becomes more and more costly in terms of storage requirements as data volumes 
grow. In situ processing is a more efficient alternative, allowing data visualisation and analysis to 
happen online, as data is generated by the simulations, thus reducing the volume of refined data to be 
stored and in consequence saving energy. Big Data management approaches include in situ processing 
capabilities that are of particular interest for addressing this challenge, i.e. by bringing the computation 
to where data is located. Furthermore, exploring how stream-processing architectures and tools could 
combine with in situ/in transit processing architectures is clearly an opportunity. It can prove relevant for 
scenarios where multiple data processing steps are carried out by combining edge compute processing 
with centralised Cloud/HPC processing. 

• Blending of traditional HPC simulation with Deep Learning techniques: To improve simulation results 
whilst requiring less computational effort. Tentative results from early investigations show a potential to 
enhance and augment existing simulations, steer simulations between successive iterations, and combine 
numerical simulation models with Machine Learning based equivalent approximations for instance for 
short-range predictions.  

• Maximising operational efficiency and throughput for large multi-node systems: This is a Big Data 
problem in itself, which requires near-real-time analytics of huge data streams (like monitoring data 
from all nodes and fabrics), prediction and prognostics of future system behaviour and state, and finally 
prescriptive system management. All of this has to fit in the compute centres production policies, and 
needs to reach complex resource management and orchestration decisions.  

• Demand by HPC users for interactive analytical capabilities added to HPC workloads: Challenge is 
to integrate these with the current systems and systems software architectures and ensure that HPC 
resources are effectively utilised.  

5.3 Mutual Software Engineering Learnings 

The specification of infrastructure requirements for a BDC or HPC workload entails a complex task involving 
multiple variables and diverse criteria, such as data types, scalability and type of processing, 
communication between tasks or processes, among many others. Software engineering has a critical role to 
play in ensuring those workloads can make best use of the underlying hardware resources.  

For example, BDC workloads typically run a Cloud Computing setup designed to leverage dynamic and 
adaptive cluster resource management, dimensioning and configuration according to economic cost, 
required quality of service, and availability. Software engineering of BDC applications is typically 
orientated around agile frameworks – designed to lower barriers between Development and Operations 
teams, accelerate workflows (i.e. high deployment rates for faster feedback, better code quality leading to 
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less errors and lower costs, etc), and increase the reliability, stability, and resilience of the production 
environment.  

HPC workloads typically leverage well-established models and processes for optimising performance and 
efficiency of very large, tightly coupled workloads and execution systems. Software engineering of HPC 
applications is typically combining the modeling of compute, communication and I/O operations required 
with proven ways to identify and correct efficiency and performance bottlenecks in their execution on 
large-scale parallel computer systems.  

Software engineering frameworks associated with respective ecosystems of BDC and HPC may still require 
further research and advances; even so, there are opportunities for each ecosystem to benefit from results 
already created by the other ecosystem as respective workloads increase in compute intensity and/or in 
data intensity. 

 

 

6.0 CONCLUSIONS 
 

Whilst a proportion of Big Data Computing workloads are increasing in compute intensity and a proportion 
of HPC workloads are increasing in data intensity, the generally unique 
(technical and economic) requirements of HPC and Big Data Computing 
workloads call for distinct compute stacks tailored to the needs of their 
respective workloads. HPC and BDC ecosystems should continue to identify 
and research idiosyncratic challenges particular to their respective domains, 
but not in isolation from each other. Fostering increased collaboration 
between HPC and Big Data ecosystems will lead to the identification and 
exchange of complementary capabilities (e.g. applications, setups, 
workflows, etc) that will accelerate the pace of innovation for their respective 
stacks i.e. by transplanting specific HPC-inspired-capabilities for addressing 
the compute-intensity of certain Big Data Computing workloads, and similarly 
transplanting specific Big Data-inspired-capabilities for addressing the data-intensity of certain HPC 
simulation and modelling workloads. 

  

Increased 
collaboration to 
identify and 
exchange 
complementary 
capabilities 
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ABOUT BDVA 
The Big Data Value Association (BDVA) is an industry-driven international non–for-profit organisation with 
200 members (as of November 2018) all over Europe and a well-balanced composition of large, small, 
and medium-sized industries as well as research and user organizations. BDVA is the private counterpart to 
the EU Commission to implement the Big Data Value PPP program.  BDVA and the Big Data Value PPP 
pursue a common shared vision of positioning Europe as the world-leader in the creation of Big Data Value. 
The mission of the BDVA is to develop the Innovation Ecosystem that will enable the data-driven digital 
transformation in Europe delivering maximum economic and societal benefit, and, achieving and sustaining 
Europe’s leadership on Big Data Value creation and Artificial Intelligence. BDVA enables existing regional 
multi-partner cooperation, to collaborate at European level through the provision of tools and knowhow to 
support the co-creation, development and experimentation of pan-European data-driven applications and 
services, and knowhow exchange. For further information: www.bdva.eu / info@core.bdva.eu / 
@BDVA_PPP 

 

 

ABOUT ETP4HPC 
ETP4HPC is the European Technology Platform (ETP) in the area of High-Performance Computing (HPC). It is 
an industry-led think-tank comprising of European HPC technology stakeholders: technology suppliers, 
research centres as well as Independent Software Vendors and HPC industrial and academic end-users (as 
of November 2018, ETP4HPC has 93 members, out of which 45 are companies from the private sector /34 
are SMEs/). The main task of ETP4HPC is to define research priorities and action plans in the area of HPC 
technology provision. Since 2013, we have been issuing and updating our Strategic Research Agenda as a 
multi-annual European HPC technology roadmap and a mechanism to help the European Commission define 
the contents of the HPC calls for projects in the successive Horizon 2020 Work Programmes. At the end of 
2013, ETP4HPC signed the HPC contractual Public Private Partnership with the European Commission. 
ETP4HPC is the private side partner of this cPPP, contributing to H2020 HPC programme development and 
steering, in particular synchronising the efforts in the areas of technologies and applications (the Centres of 
Excellence in Computing Applications joined the cPPP Partnership Board in 2015). More at www.etp4hpc.eu.  
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ENDNOTES 
1 A model of a system is "a set of instructions, rules, equations, or constraints for generating [input/output] 
behaviour". A simulation executes to the model, so that it computes the modelled system behaviour. 
2 A feature is an individual measurable property or characteristic of a phenomenon being observed. Choosing 
informative, discriminating and independent features is a crucial step for effective algorithms in pattern 
recognition, classification and regression. 
3 Hadoop-type architecture refers to software frameworks for storage and large-scale processing of data-sets 
on clusters of commodity hardware. 
4 An embarrassingly parallel problem (EPP) is one for which little or no effort is required to separate the problem 
into a number of parallel tasks. This is often the case when no dependency exists between those parallel tasks, 
i.e. they neither have to communicate data nor do the tasks have to be synchronised. A common EPP problem is 
one in which a very large data set is chopped into pieces which are dispatched to various computers for 
processing; or, several copies of a smaller data set are distributed across computers to perform different 
computations on it (e.g. running the application with different parameters). After the processing is finished, the 
resulting data is re-assembled or the results from all computers summarised. 
5 HPC generally relies on the MPI (Message Passing Interface) industry standard which explicitly handles 
communication between computing nodes within the program code. Alternative models, like for instance PGAS 
(partitioned global address space) programming models only account for a very small part of HPC use.  
6 User-space is the CPU privilege level area where application software and some drivers execute; it is also used 
to refer to the memory areas accessible to such software codes. 
7 Floating-point operations per second (FLOP/s) – represent a unit of counting floating-point operations carried 
out by an algorithm or computer hardware. A floating point operation is a mathematical operation (addition, 
multiplication, division, and so on) on a number with a decimal point and exponent (for example, 1.2345 x 103). 
Considered important as HPC workloads carry out a huge amount of floating-point calculations. 
8 An application program interface (API) is a set of routines, protocols, and tools for building software 
applications. Basically, an API specifies how software components interact. 
9 An Integrated Development Environment (IDE) is a software application that provides comprehensive facilities to 
computer programmers for software development. An IDE normally consists of a source code editor, build 
automation tools and a debugger.  
10 Computational steering is the practice of manually intervening with an otherwise autonomous computational 
process, to change its outcome. 
11 Input/output operations per second (IOP/s) – measures computer storage in terms of the number of read and 
write operations it can perform in a second. IOP/s are a primary concern for Big Data environments where 
content needs to be efficiently accessed, added to or modified constantly.  
12 Integer is a whole number; a number that is not a fraction. 
13 Byte/string operations represent encoding and decoding of data. Everything must be encoded before it can 
be processed or written to computer storage/memory, and it must be decoded before it can be read by a 
human. 
14 Task Graphs break down a computation into a series of independent tasks with clearly defined dependencies 
which form a directed acyclic graph. The acyclic nature of the graph is important as it removes the possibility of 
deadlocks between tasks, provided the tasks are truly independent. The overall task graph is considered 
complete when all the tasks have completed. 
15 Graph Analytics includes graph modelling, visualisation, and evaluation for understanding large, complex 
networks. 
16 Spatial-temporal models arise when data is collected across time as well as space, includes specific processing 
and visualisation methods, in general GIS-related. 
17 Training (within the DL context) is very computationally expensive and can run 24/7 for very long periods of 
time. It is reasonable to think of training as the process of adjusting the model weights of an artificial neural 
network (ANN) i.e. model fitting to the training data set.  
18 Inferencing refers to the application of that trained model to make predictions or classify data on newly 
received data. In this case, the parameters are kept fixed based on a fully trained model. Inferencing can be 
done quickly and even in real-time to solve valuable problems. Inferencing consumes very little power, therefore 
inferencing can be incorporated into edge devices, smart sensors and IoT (Internet of Things) devices. Inferencing 
works because once the model is trained, the ANN can interpolate to correctly make predictions for data points it 
has never seen before. 
19 Fourier transform (FT) decomposes a function of time (a signal) into the frequencies that make it up, similar to 
how a musical chord can be expressed as the frequencies (or pitches) of its constituent notes. 
20 As the number of parameters and computational needs of neural networks grow, efficiently parallelising 
neural network training to run on many nodes and potentially many accelerators  (beyond the number that can 
be attached to one node) becomes more and more important, because long waiting times for large networks to 
train slows down experimentation and limits further development. 
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