DEEP-EST

Estela Suarez

Jülich Supercomputing Centre, JSC (Germany)
The DEEP Projects

Objectives

• Flexible association of heterogeneous resources
• Increase system performance & energy efficiency
• Address diverse application needs (HPC, HPDA, ML)
• Co-design production-quality HW & SW prototypes
• Build a strong, sustainable European ecosystem

Project data

• 27 partners
• Time frame: 2011 - 2020
• Total EU funding: 30 M€
Co-design applications

- Kreuzer et al. The DEEP-ER project: I/O and resiliency extensions for the Cluster-Booster architecture. HPCC’18 proceedings
- Christou et al., EMAC on DEEP, Geoscientific model devel.(2016) [10.5194/gmd-9-3483-2016]
- Kumbhar et al., Leveraging a Cluster-Booster Architecture for Brain-Scale Simulations, Lecture Notes in Computer Science 9697 (2016) [10.1007/978-3-319-41321-1_19]
- Leger et al., Adapting a Finite-Element Type Solver for Bioelectromagnetics to the DEEP-ER Platform. ParCo 2015, Advances in Parallel Computing, 27 (2016) [10.3233/978-1-61499-621-7-349]
Modular Supercomputing Architecture

- Address **diverse user requirements** in one system
 - Data intensive
 - Highly scalable parallel computing
 - High throughput computing
- Modules shaped via **co-design**
- Achieve leading **scalability & energy efficiency**
 - Extreme Scale Booster ➔ Exascale
- **Unified SW environment** to run applications across all modules
Software Environment

Goal: standard HPC environment supporting innovative architecture
The DEEP projects have received funding from the European Union’s Seventh Framework Programme (FP7) for research, technological development and demonstration and the Horizon2020 (H2020) funding framework under grant agreement no. FP7-ICT-287530 (DEEP), FP7-ICT-610476 (DEEP-ER) and H2020-FETHPC-754304 (DEEP-EST).