Achievements and Ambitions: an Overview of the Current European Project Landscape

François Bodin
Jean-François Lavignon
EXDCI2
Introduction

• EU is committed to develop the next generation of HPC systems and applications
 • “systems 50x to 100x faster than 2017 on real apps” in 2023

• In a context of HPC frontier extensions
 • Discovery process
 • Data oriented approach
 • Digital twins
 • Spatial
 • The Exascale
 • The Edge, the Fog
 • Technological
 • Software: new hourglass model, workflows, containers
 • Hardware (e.g. NVM, photonics, Percipient storage, …)
FET-HPC Projects Growth (Projects and Members)

2014 - #136 nodes
2015 - #195 nodes
2016 - #209 nodes
2017 - #210 part. #47 projects
2014 European FET-HPC Projects & Results
HPC System Oriented Projects

- From silicon package to system
 - Interposer, UNIMEN architecture, interconnect, software stack

- ARM-based HPC
 - Demonstrator and software stack

- Reconfigurable compute
 - Architecture, programming environment
 - Time constraint architecture

- IO
 - New memory hierarchy
 - File system
HPC Stack and Application Oriented Projects

- Energy efficiency
 - Metric, DSL, autotuning
- Programming models
 - OmpSs, StarPU, GASPI, PaRSEC, MPI, OpenMP
 - C++ templates + tool chain
- Deployment of multiscale applications
- Generic applications
 - Hyperbolic PDE
 - Fluid dynamics
 - Machine learning (for drug discovery)
 - Numerical linear algebra
 - Weather models
Results of the Projects (1)

Iceotope have filed 10 patents within the FETHPC project, 8 in ExaNeSt and 2 in EuroEXA.

Type of result

<table>
<thead>
<tr>
<th>Type of result</th>
<th>Number per type of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>4</td>
</tr>
<tr>
<td>application optimisation</td>
<td>5</td>
</tr>
<tr>
<td>benchmark suite</td>
<td>5</td>
</tr>
<tr>
<td>demonstrator</td>
<td>8</td>
</tr>
<tr>
<td>hardware</td>
<td>20</td>
</tr>
<tr>
<td>report</td>
<td>2</td>
</tr>
<tr>
<td>software</td>
<td>88</td>
</tr>
<tr>
<td>training</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
</tr>
</tbody>
</table>

- Iceotope have filed 10 patents within the FETHPC project, 8 in ExaNeSt and 2 in EuroEXA.

Results of the Projects (2)

<table>
<thead>
<tr>
<th>Type of result</th>
<th>Number per type of result</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>4</td>
</tr>
<tr>
<td>application optimisation</td>
<td>5</td>
</tr>
<tr>
<td>benchmark suite</td>
<td>5</td>
</tr>
<tr>
<td>demonstrator</td>
<td>8</td>
</tr>
<tr>
<td>hardware</td>
<td>20</td>
</tr>
<tr>
<td>report</td>
<td>2</td>
</tr>
<tr>
<td>software</td>
<td>88</td>
</tr>
<tr>
<td>training</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
</tr>
</tbody>
</table>

Software

<table>
<thead>
<tr>
<th>Software</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>API</td>
<td>2</td>
</tr>
<tr>
<td>API for RDMA</td>
<td>1</td>
</tr>
<tr>
<td>API for reconfiguration of FPGA</td>
<td>1</td>
</tr>
<tr>
<td>application</td>
<td>25</td>
</tr>
<tr>
<td>application library</td>
<td>1</td>
</tr>
<tr>
<td>application middleware</td>
<td>5</td>
</tr>
<tr>
<td>Application optimization</td>
<td>4</td>
</tr>
<tr>
<td>CAD tool</td>
<td>1</td>
</tr>
<tr>
<td>communication library</td>
<td>4</td>
</tr>
<tr>
<td>Compiler</td>
<td>2</td>
</tr>
<tr>
<td>data base</td>
<td>1</td>
</tr>
<tr>
<td>debugging module</td>
<td>1</td>
</tr>
<tr>
<td>file system</td>
<td>2</td>
</tr>
<tr>
<td>firmware</td>
<td>1</td>
</tr>
<tr>
<td>FPGA tool</td>
<td>1</td>
</tr>
<tr>
<td>IO stack</td>
<td>1</td>
</tr>
<tr>
<td>library system</td>
<td>2</td>
</tr>
<tr>
<td>optimization on FPGA</td>
<td>1</td>
</tr>
<tr>
<td>optimization tools</td>
<td>1</td>
</tr>
<tr>
<td>OS</td>
<td>1</td>
</tr>
<tr>
<td>performance model</td>
<td>1</td>
</tr>
<tr>
<td>programming environment</td>
<td>1</td>
</tr>
<tr>
<td>programming environment for FPGA</td>
<td>1</td>
</tr>
<tr>
<td>runtime</td>
<td>8</td>
</tr>
<tr>
<td>simulator</td>
<td>2</td>
</tr>
<tr>
<td>software stack</td>
<td>1</td>
</tr>
<tr>
<td>system middleware</td>
<td>4</td>
</tr>
<tr>
<td>system software</td>
<td>5</td>
</tr>
<tr>
<td>tools</td>
<td>5</td>
</tr>
<tr>
<td>VHDL IP</td>
<td>1</td>
</tr>
<tr>
<td>programming model</td>
<td></td>
</tr>
</tbody>
</table>
Demonstrators Developed by the Projects (1)

- **Exanode-ExaNeST-EcoScale**
 - Based on ExaNest daughter board
 - ~20 boards

- **MANGO**
 - 8 HPC servers and 196 FPGA

- **DEEP**
 - Modular Supercomputing concept developed in the DEEP projects is now also used in production machines at JSC

- **Greenflash**
 - To demonstrate control of telescope mirrors
Demonstrators Developed by the Projects (2)

- **SAGE**
 - Open to test; 4 tiers of storage

- **NextGenI O**
 - based on DC Persistent Memory™, next-generation non-volatile memory technology

- **Mont-Blanc**
 - Open to test; Dibona 96 sockets
 - ARM ThunderX2

First commercial system acquired by CEA
Conclusion

- The European organization landscape is evolving profoundly
 - EuroHPC joint undertaking
 - European Open Science Cloud
 - European Processor Initiative

- To address many challenges
 - More technology developments in Europe
 - Creating synergies between HPC/HPDA/IoT
 - Exascale applications able to address our societal challenges
<table>
<thead>
<tr>
<th>Techno Targeted user</th>
<th>Computing node/board</th>
<th>Interconnect/Memory hierarchy</th>
<th>Storage/file system</th>
<th>Tools for FPGA</th>
<th>Software stack</th>
<th>Programming model/tool</th>
<th>Optimization tools</th>
<th>Library</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESD</td>
<td>Ecoscale Exanode MontBlanc3</td>
<td>NextGenIO ExaNest Ecoscale</td>
<td>SAGE</td>
<td>MANGO</td>
<td>Greenflash EcoScale</td>
<td>Exanode InterTwine</td>
<td>Ecoscale</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPC system provider</td>
<td>Greenflash ExaNest Ecoscale MontBlanc3 Exanode</td>
<td>NextGenIO ExaNest</td>
<td>SAGE</td>
<td>MANGO</td>
<td>Greenflash EcoScale</td>
<td>MontBlanc3 MontBlanc3</td>
<td>InterTwine</td>
<td></td>
<td>NextGenIO COMPAT</td>
</tr>
<tr>
<td>Computing centre</td>
<td></td>
<td>SAGE</td>
<td>MANGO NextGenIO MontBlanc3 COMPAT</td>
<td>InterTwine</td>
<td></td>
<td></td>
<td></td>
<td>NextGenIO COMPAT</td>
<td></td>
</tr>
<tr>
<td>Application developer</td>
<td>ExaNest SAGE NextGenIO</td>
<td>MANGO EcoScale Extra</td>
<td>MANGO AllScale Greenflash MontBlanc3 Exanode InterTwine</td>
<td>Greenflash MontBlanc3 EXTRA</td>
<td>ExaFlow ExCAPE NLAfET</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>End user</td>
<td></td>
<td></td>
<td>ExaFlow</td>
<td>NLAfET</td>
<td>NLAfET</td>
<td>ExaNest ExaFlow ESCAPE ExHype ExCAPE NLAfET</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Frontier Extension, an Example the Digital Twins

Src: Jens Krueger ITWM Faunhofer, BDVA/ETP4HPC/EXDCI2