MANGO: implications and contributions to Extreme-Scale Demonstrators

EsD roundtable@ European HPC Summit Week
May 18th, 2017, Barcelona, Catalunya

Alessandro Cilardo
acilardo@unina.it

This project has received funding from the European Union’s H2020 research and innovation programme under grant agreement No 671668
• **MANGO FETHPC-2014 project:**
 - is about **manycore architecture exploration in HPC**
• General-purpose nodes (Xeon+GPGPU) coupled with Heterogeneous nodes, HNs:
 - A large-scale cluster of high-capacity FPGAs
 - A robust, scalable interconnect for a **multi-FPGA manycore** system
 - Will enable FPGA acceleration **at scale**:
 - a key ingredient for the EsD roadmap
 - A continuum from FPGA emulation to the final physical platform (might be an ASIC manycore, FPGA, mixed…)
 - **under a stable software environment**
 - Native isolation and partitioning mechanisms for **QoS-aware capacity computing** HPC applications
 - Highly customizable GPU-like / vector cores
• Two-phase passive **energy-efficient cooling**
• Demonstrated applications with stringent high-performance and QoS requirements
MANGO AND EsD

• What will MANGO bring to the EsD roadmap?

→ answer three important questions:

 – How to shape custom hardware acceleration in HPC?

 – How to organize and exploit FPGA devices at scale?

 – How to substantially reduce cooling cost in heterogeneous nodes?
THE MANGO HW/SW ECOSYSTEM
MANGO: CUSTOM COMPUTE UNITS

Configurable vector/GPU-like accelerators enabling application-driven customization

- Vector/GPU-like units *(nu+ core)* within a multi-level manycore system
- Fully customizable hardware features: FP precision, lanes, hw threads etc…
- Stable software environment (LLVM compiler, OpenCL support, API)
- Coupled with specialized algorithm accelerators, possibly generated through HLS
Multi-FPGA infrastructure and interconnect

- Board design, advanced **multi-FPGA** manycore, interfacing, …
- Scalable interconnect ("off-chip" NoC)
- Partitioning/isolation mechanisms for QoS-aware resource management
MANGO: COOLING SYSTEM

Energy-efficient passive cooling

- **Thermosyphon** concept: two-phase passive cooling
- PUE = 1.02 (vs. 1.60 of air cooling or 1.10 of liquid cooling)
So, to recap…

- **MANGO key contributions to EsD:**
 - Customizable, *software-programmable* large accelerators (possibly coupled with specific custom hardware blocks)
 - Vector units, custom precisions, customized non-coherent memory…
 - Compute unit architecture can be mapped to various hw technologies relying on a *stable software ecosystem*
 - Infrastructure for interconnecting FPGAs in a manycore system
 - Advanced network with QoS/isolation mechanisms embracing clusters of FPGAs (enables architecture-wide customization, memory partitioning, some form of *close-to-data* computing)
 - Makes HPC ready for *FPGA acceleration at scale*
 - Innovative concept for 2-phase passive *energy-efficient cooling*.
Using/Integrating MANGO Technologies

- Vector/GPU-like nu+ core
 - LLVM backend available
 - OpenCL support to be provided soon
 - can be coupled with commercial OpenCL-based HLS flows
 - Possible technology remapping (with no change at the SW level)

- Multi-FPGA / manycore infrastructure
 - Custom interconnect hidden to applications and software
 - Non-proprietary interfaces: PCIe, Gigabit Ethernet, DDR3
 - Integration with general-purpose nodes already demonstrated
 - Configuration knobs (mapping, partitioning,…) exposed to RTMS

- RunTime Management System (RTMS) implementation
 - Global RunTime Management System based on SLURM
 - Policies as plugins: no need to modify the SLURM core
 - Local RTMS based on the Barbeque open-source project

- Cooling system:
 - involves the mechanical design at the board/rack level
 - MANGO developed a general methodology for cooling design
 - can be readily applied to next-generation HPC systems
Maturity and ESD Roadmap

- Key innovations have been demonstrated
 - Intermediate Review Meeting held May 10th, 2017
Maturity and EsD Roadmap

- Key innovations have been demonstrated
 - Intermediate Review Meeting held May 10th, 2017
- TRL6 / TRL7 expected by Oct 2018 (pre EsD1-2 Phase A)
WHAT'S NEXT?

- Timing and maturity fit the EsD roadmap
- Relevant real-world applications are being fully ported
 - Videotranscoding, medical imaging, DSP and real-time crypto-processing
- MANGO has **complementarities** with other FETHPC projects
 - Potential synergies:
 - Standard CPUs/accelerators, storage and new memory technologies, advanced programming models
- MANGO will provide a few **key missing pieces** for EsD
 - Customizable compute units that can be specified in an application-driven fashion
 - Comprehensive, scalable, future-proof infrastructure support for hardware acceleration in HPC
 - Innovative passive cooling enabling unprecedented values of PUE
- Next step on top of the current MANGO roadmap
 - Launch a **Pilot** to demonstrate factual interplay with other projects
 - We will soon solicit focused exchange actions