

SRA – update, Workprogramme 2018-2020, European Cloud Initiative,

cPPP meeting, HPC Summit Prague, May 11th 2016

Strategic Research Agenda SRA

a multi-annual roadmap towards Exascale High-Performance Computing Capabilities

Horizon 2020 WPs and SRAs

HPC — HORIZON 2020 ROADMAP

Priorities

- There is a demand for R&D and innovation in both extreme performance systems and mid-range HPC systems
 - Scientific domain and some industrial users want extreme scale
 - ISVs and part of the industry expect more usability and affordability of midrange system
- The ETP4HPC HPC technology providers are also convinced that to build a sustainable ecosystem,
 - their R&D investments should target not only the exascale objective (too narrow a market)
 - an approach that aims at developing technologies capable of serving both the extreme-scale requirements and mid-market needs can be successful in strengthening Europe's position.

4 dimensions of the SRA

Transversal issues to be addressed

Three technical topics:

- Security in HPC infrastructures to support increasing deployment of HPDA
- Resource virtualisation to increase flexibility and robustness
- HPC in clouds to facilitate ease of access

Two key element for HPC expansion

- Usability at growing scale and complexity
- Affordability (focus on TCO)

How was the SRA been built?

8 Workgroups covering the 8 technical focus areas:

SRA 2015 technical focus areas

- HPC System Architecture and Components
- Energy and Resiliency
- Programming Environment
- System Software and Management
- Big Data and HPC usage Models
- Balance Compute, I/O and Storage Performance
- Mathematics and algorithms for extreme scale HPC systems
- Extreme scale demonstrators
- 48 ETP4HPC member orgs/companies involved in these workgroups
- Members named 170 individual experts to contribute, 20-30 per working group

Other interactions

- Feedback sessions with end-users and ISVs at Teratec Forum
 - 20 end-users outline their deployment of HPC, future plans and technical recommendations
 - Very diverse set of priorities (performance &scale, robustness, ease of access, new workflows etc.)
 - No 'One size fits all' approach possible
- Technical session with Big Data Value Association (BDVA) to understand architectural influences of HPDA
 - Technical dialogue started, much more to be done over next 1-2 years
 - BDVA has issued an update to their SRIA in Jan 2016

The technical domains and the ESD proposal

Trends and recommended research topics – a few examples

HPC System Architecture, Storage and I/O, Energy and Resiliency

Major trends - a subset:

- Increased use of accelerators (e.g. GPUs, many core CPUs) in heterogeneous system architectures
- Compute node architectures efficiently integrate accelerators, CPUs with high bandwidth memory
- Non volatile memory types open up new interesting memory and caching hierarchy designs
- System networks to significantly scale up and cut latencies, introducing virtualisation mechanisms
- Storage subsystems to become more 'intelligent' to better balance compute and I/O
- Increased activities in object storage technologies with major architectural revamp in the next years
- Focus on architectural changes to improve energy efficiency and reduce data movement

Research topics to be addressed (examples)

- Compute node deep integration with embedded fast memory and memory coherent interfaces
- Silicon photonics and photonic switching in HPC system networks
- Global energy efficiency increases with targets of 60kW/PFlops in 2018 and 35 kW in 2020
- Active storage technologies to enable 'in situ' and 'on the fly' data processing
- Research in methods to manage 'energy to solution'
- Prediction of failures and fault prediction algorithms

HPC System Architecture, Storage and I/O: milestones

M-ARCH-1: New HPC processing units enable wide-range of HPC applications.	2018
M-ARCH-2: Faster memory integrated with HPC processors.	2018
M-ARCH-3: New compute nodes and storage architecture use NVRAM.	2017
M-ARCH-4: Faster network components with 2x signalling rate (rel. to 2015) and lower latency available.	2018
M-ARCH-5: HPC networks efficiency improved.	2018
M-ARCH-6: New programming languages support in place.	2018
M-ARCH-7: Exascale system energy efficiency goals (35kW/PFlops in 2020 or 20 kW/Pflops in 2023) reached.	2020-2023
M-ARCH-8: Virtualisation at all levels of HPC systems.	2018
M-ARCH-10: New components / disruptive architectures for HPC available.	2019

M-BIO-1: Tightly coupled Storage Class Memory IO systems demo.	2017
M-BIO-2: Common I/O system simulation framework established.	2017
M-BIO-3: Multi-tiered heterogeneous storage system demo.	2018
M-BIO-4: Advanced IO API released: optimised for multi-tier IO and object storage.	2018
M-BIO-5: Big Data analytics tools developed for HPC use.	2018
M-BIO-6: 'Active Storage' capability demonstrated.	2018
M-BIO-7: I/O quality-of-Service capability.	2019
M-BIO-8: Extreme scale multi-tier data management tools available.	2019
M-BIO-9:Meta-Data + Quality of Service exascale file i/o demo.	2020
M-BIO-10: IO system resiliency proven for exascale capable systems.	2021

Energy and resiliency: milestones

M-ENR-MS-1: Quantification of computational advance and energy spent on it.	2017
M-ENR-MS-2: Methods to steer the energy spent.	2017
M-ENR-MS-3: Use of idle time to increase efficiency.	2018
M-ENR-AR-4: New levels of memory hierarchy to increase resiliency of computation.	2017
M-ENR-FT-5: Collection and Analysis of statistics related to failures.	2018
M-ENR-FT-6: Prediction of failures and fault prediction algorithms.	2019

M-ENR-FT-10: Application survival on unreliable hardware.	2019
M-ENR-AR-7: Quantification of savings from trade between energy and accuracy.	2018
M-ENR-AR-8: Power efficient numerical libraries.	2019
M-ENR-MS-9: Demonstration of a sizable HPC installation with explicit efficiency targets.	2019

Extreme-Scale Demonstrators

Characteristics

- Complete prototype HPC systems
- high enough TRL to support stable production
- using technologies developed in the previous projects
- based on application system co-design approach
- large enough to address scalability issues (at least 5% of top performance systems at that time)

Two project phases:

- phase A: development, integration (of results from R&D projects) and testing
- phase B: deployment and use, code optimisation, assessment of the new technologies

Extreme scale Demonstrators call-integration-deployment schedule

SRA – next actions

Google

« Public Call for comments on SRA "

We will welcome your comments on the current SRA

http://www.etp4hpc.eu/strategic-research-agenda/

Strategic Research Agenda | ETP4HPC

www.etp4hpc.eu/strategic-research-agenda/ •

6 days ago - Public Call for Comments on ETP4HPC Strategic Research Agenda. Our organisation would like to receive feedback on this document from the ...

Public Call for Comments for ETP4HPC Strategic Research ...

https://www.surveymonkey.com/.../ETP4HPC-SRA2-PUBLIC-CALL4C... ▼

The updated Strategic Research Agenda (SRA) of ETP4HPC is now available at the following location: http://www.etp4hpc.eu/strategic-research-agenda/

Public Call for Comments on ETP4HPC Strategic Research ...

primeurmagazine.com/flash/AE-PF-12-15-16.html ▼

2 days ago - Public Call for Comments on ETP4HPC Strategic Research Agenda for exascale supercomputing in Europe December 2015. 13 Dec 2015 ...

Primeurflash 20151213 - Primeur Magazine

primeurmagazine.com/contentsflash20151213.html ▼

2 days ago - Public Call for Comments on ETP4HPC Strategic Research Agenda for ... Agenda on November 24th 2015, the ETP4HPC organisation would ...

ETP4HPC, EXDCI and SESAME Net - new HPC initiatives in ...

e-irg.eu/.../etp4hpc-exdci-and-sesame-net-new-hpc-initiatives-in-europe-... ▼ Apr 9, 2015 - The HPC Centres of Excellence Call amounts to 14 million euro. ... will require an investment of 15 million euro; the Public Procurement of innovative HPC systems has been estimated at 26 million; 698 Views, 0 Comments. You visited this page on 12/2/15.

Catherine Gleeson | LinkedIn

https://www.linkedin.com/in/catherine-gleeson-151229b7

Amsterdam Area, Netherlands - ETP4HPC - European Technology Platform for HPC - ETP4HPC

Catherine Gleeson. ETP4HPC - European Technology Platform for HPC ... Public Call for Comments on ETP4HPC Strategic Research Agenda. December 11 ...

eInfrastructures (@eInfraEU) | Twitter

https://twitter.com/einfraeu ▼

"Public Call for Comments on ETP4HPC Strategic Research Agenda" by @Etp4H on ... New #H2020 #einfrastructures call for support to policy and international ...

Images for etp4hpc public call for comments

Report images

Next SRA-related events in 1H2016

- HPC summit Extreme scale Demonstrator workshop May 12th
 - focussed on the EsD definition (engage potential players, further implementation details)
 - at this event the three pillars for the EsD mission (CoE, HPC centres and the FETHPC1 project speakers) are invited. More than 80 registered participants!
- Participation in BDEC conference June 16 & 17
- ISC16 June 23rd
 - Scope: Feedback session on SRA directions, content and value to shape the next update (Invited are: End-users, ISVs and International HPC experts)
 - 2nd EsD workshop (follow-on to May 12th workshop)
- Level set with HPC application experts (EXDCI WP3) September 21 & 22
- Technical workshop with Big Data Value Association (BDVA) June/July

Workprogramme 2018-2020, European Cloud Initiative

Workprogramme 2018 – 2020 discussion - topics

From "ETP4HPC – Recommendations for Work Programme 2018-2019-2020":

- European Exascale: timing mismatch between expectations and investment so far
- ETP4HPC recommendation based on:
 - Diversity of System Architectures
 - Top priority: European system architectural leadership: Grow basic "know-how" and expertise
 - SME and start-ups require support for entry and participation in larger H2020 research projects
- Workprogramme elements:
 - Research in HPC Technology
 - Extreme-scale Demonstrators
 - Centres of Excellence for Computing Applications (CoEs)
 - Continuation and extension of support actions

Workprogramme 2018-2020 budget recommendations

Workprogramme 2018 – 2020: budget recommendations		
Area	Suggested funding volume (m€)	
Technology	170 - 270	
Focussed projects high TRL	130-180	
Focussed projects low TRL	40 - 90	
Extreme scale Demonstrators	100 - <mark>200</mark>	
Two asap, two incl. WP16 results		
Centres of Excellence	70	
Existing (after merge)	45	
New	25	
Support actions	8	
HPC eco system development incl. Joint actions with Big Data and Cloud Computing	6	
International cooperation	2	

"European Cloud Initiative" discussion - topics

- From "European Cloud Initiative Building a competitive data and knowledge economy in Europe"
- ".....realising exascale supercomputers around 2022, based on EU technology, which would rank in the first 3 places of the world (p8)
- foster an HPC ecosystem capable of developing new European technology such as low power
 HPC chips (p9)
- The Commission and participating Member States should develop and deploy a large scale European HPC, data and network infrastructure, including (p10):
 - the acquisition of two co-designed, prototype exascale supercomputers and two operational systems which will rank in the top three of the world – as of 2018
 - the establishment of a European Big Data centre as of 2016

Potential paths to commercial systems

THANK YOU!

For more information visit

www.etp4hpc.eu

contact: office@etp4hpc.eu

