Cooling & Powering ExaScale

12/5/16
Cooling and Powering supercomputers effectively is a long-recognized problem.

Seymour Cray cited “the thickness of the wiring mat and getting rid of the heat” as key challenges in supercomputer design.
What Does That Mean Today?

- The “Wiring Mat”
 - Interconnect
 - Power Delivery

- Getting Rid of the Heat
 - Liquid Cooling

- (New Factors) Failure Domain, Scalability and Serviceability
Challenges

- Increasing Density of Equipment
 - Denser equipment reduces overall “wiring mat” by volume
 - However number of links per sqft increases, just link distance decreases.
 - Short links can be copper (cheap), long links must be optical

- Energy Efficiency
 - 45C inlet water cooling can improve overall energy efficiency by 30% and reduce CapEx

- Reliable & Efficient Power Delivery
 - 48V DC to POL improves power delivery (efficiency or wire size) 16x vs 12V DC to POL
 - High density liquid cooled power conversion (up to 500kW of power conversion in a dedicated cabinet)

- Minimise Failure Domains & Enable Serviceability
 - Large failure domains can impact scalability
ExaNest Stage 1

Daughter Card

Blade
Up to 72

(project proto unit will be up to 36, half height)
Stage 2 Targets

- “Double Sided, Double Density” Blades
- 16x Daughter Cards per blade
- 6x Blades + 1 or 2 Switches per chassis
- 12x Chassis per 1200x600 Cabinet
- 1,152 Daughter Cards per Cabinet
Head Office
AMP Technology Centre
Advanced Manufacturing Park
Brunel Way, Sheffield, S60 5WG

T: +44 (0)114 224 5500
E: info@iceotope.com

Peter.hopton@iceotope.com