

ComPat

Computing Patterns for High Performance Multiscale Computing

www.compat-project.eu

12 May 2016, Prague

Tomasz Piontek
Poznan Supercomputing and Networking Center

ComPat Project

Computing Patterns for High Performance Multiscale Computing

- Horizon 2020
- Call: H2020-FETHPC-2014
- Duration: 36 months
- Start: October 2015
- Current Status: 8M
- Coordinator: Prof. Alfons Hoekstra, UvA

ComPat Consortium

University of Amsterdam

University Leiden

University College London

The Hartree Centre/STFC

Poznan Supercomputing and Networking Centre

Allinea Software

Leibniz Supercomputing Centre

CBK Sci Con Limited

Max-Planck-Institut für Plasmaphysik

ITMO University

World is multi-scale

All the studied complex phenomena consist of many sub-processes disparate length and time scales that interact in strong and non-linear ways.

Multi-scale approach

a multiscale simulation, each relevant scale needs its own type of solver. Accordingly, multiscale model is defined as a collection of coupled single scale models that can be computed reliably with a dedicated, so-called "monolithic" solver.

ComPat Objectives

Project objective is to develop generic and reusable High Performance Multiscale **Computing Patterns (schemas of processing)** that will address the exascale challenges posed by heterogeneous architectures and will enable to run multiscale applications with extreme data requirements while achieving scalability, robustness, resiliency, and energy efficiency.

ComPat Objectives

Our **ambition** is to establish new standards for multiscale computing at exascale, and provision a robust and reliable software technology stack that empowers multiscale modellers to transform computer simulations into predictive science.

HPMC Patterns

We have proposed and formalised three multiscale computing patterns for multiscale applications, incorporating customized algorithms for load balancing, data handling, fault tolerance and energy consumption under generic exascale application scenarios.

HPMC Patterns

- Extreme Scaling one (or perhaps a few) of the single scale models in the overall multiscale model dominates all others by far, in terms of required computing power.
- Heterogeneous Multiscale Computing coupling of a macroscopic model to a large and dynamic number of microscopic models. A database stores previously calculated values that can be used to interpolate input for macroscale model.
- Replica Computing combines a potentially very large number of independent simulations ('replicas') to explore the parameter space.
- Hybrid Approach combination of basic patterns

Multiscale modeling and simulation framework

Conceptual Framework

Modeling Scale separation map Multiscale Modeling Language (MML)

Computational Framework

- 1. Modelling of the phenomena by identifying relevant processes (single scale models) and their relevant scales, as well as their mutual couplings.
- The single scale models and their coupling are specified with the Multiscale Modelling Language (MML) thereby forming the architecture of a multiscale model.
- 3. A coupling library like MUSCLE ensures communication between heterogeneous components is possible, with minimal and local changes to the single scale code.
- 4. Sub-models are executed on a computing infrastructure. Each sub-model may require different computing resources.

ComPat stack

Multiscale software development cycle

- Independent design, implementation and optimisation of every single-scale application kernel
- 2. Identification of the HPMC pattern
- Generation of the template / skeleton for the pattern based on formalized description
- 4. Embedding of the single scale models into the generated multiscale application skeleton (coupling)
- 5. Execution of the application on the infrastructure with taking into account energy efficiency (dynamic adaptation of resource properties)

Applications details

	Extreme Scaling	Heterogeneous Multiscale Computing	Replica Computing
Fusion (MPG-IPP)	global turbulence simulation	flux-tube chain	-
Biomedicine (UvA)	RBC and platelet transport	blood rheology	-
Biomedicine (IMTO + UvA)	In-stent restenosis	-	In-stent restenosis (*)
Biomedicine (UCL)	aneurysm flow dynamics	aneurysm flow dynamics(*)	
Material Science (UCL)		"on-the-fly" coarse-graining	phase behaviour (*)
Astrophysics (UL)	Milky-Way Galaxy simulation	Milky-Way Galaxy simulation (*)	-

	Core count (state-of-the-art)	Core count (desired)		
Extreme Scaling				
Fusion (MPG-IPP)	400,000	4,000,000		
Biomedicine (UvA)	45,000	4,000,000		
Biomedicine (ITMO + UvA)	4,000	4,000,000		
Biomedicine (UCL)	49,000	600,000		
Astrophysics (UL)	500,000	10,000,000		
Heter ogeneous Multiscale Computing				
Fusion (MPG-IPP)	16,000	120,000		
Biomedicine (UvA)	45.000	4,000,000		
Biomedicine (UCL)	49,000	750,000		
Material Science (UCL)	294.000	2,000,000		
Astrophysics (UL)	1,000	100,000		
Replica Computing				
Biomedicine (ITMO + UvA)	4,000	400,000		
Material Science (UCL)	294,000	3,000,000		

ComPat vs EsD

ComPat fully support the idea of cross-project integration and technology uptake by industry.

ComPat already follows the EsD guidelines ComPat – example of the Single Project EsD

- Co-design (technology driven by applications)
- Technology Readiness Level QCG, MUSCLE (9)
- Structure of the Consortium (TP, AO, RP)
- Phase A + B

ComPat in EsD Projects

Technology Providers

- HPMC Patterns (ComPat)
- QCG Middleware (PSNC)
- MUSCLE Coupling Library (UvA, PSNC)
- Energy Consumption Optimization Service and Library (PSNC)

Application owners

9 grand challenge applications

HPC Centers

- LRZ Leibniz Supercomputing Centre
- PSNC Poznan Supercomputing and Networking Center
- STFC Science and Technology Facilities Council

Tomasz Piontek piontek@man.poznan.pl

www.compat-project.eu

