A Holistic View of European HPC
from the EXDCI project

https://exdci.eu

François Bodin
Introduction

- A holistic view of European HPC
 - How the EU is building its next generation HPC systems and applications

- EXDCI project supports the EU HPC development
 - Roadmapping
 - Strategy
 - Performance monitoring
European H2020 Investments in HPC

• Important investment from the European commission in HPC

• ~700 M€ euros to be invested between 2016-2020

Src: Jean-Philippe Nominé, ETP4HPC
Where Are We Going?

- Next generation of HPC systems is multi-objectives
 - 10^{18} flops of strategic interest for a small community
 - Beyond the traditional HPC, e.g. Smart-cities, IoT
 - Convergence of HPC, HPDA and Cloud computing
 - Machine learning friendly
 - Support for complex workflows (distributed, heterogeneous, interactive, etc.)
 - Combining edges, data centers, supercomputers

- Develop EU technologies
 - Reduce dependencies

- Improve infrastructures
 - Network, storage and systems
Support for Complex Workflows

Data location and energy are the critical dimensioning parameters
- We have frontiers where we need a continuum
- Topology oblivious routing scheme is not adequate

complex scientific workflows

Bottleneck frontiers

The edge

Intermediate nodes (CDN, data centers, etc.)

Strongly coupled nodes (Supercomputers, data centers, etc.)
A Concrete Example

Rennes Metropolis project (FR)
Why Are We going There?

- Science needs more computing power, storage, data analysis
 - Numerical laboratories (see Pathways to convergence document)

- Specific to EU ecosystem
 - After a high expansion period we are losing ground
 - Increased competition
 - HPC at scale becomes more critical for economy, environment and metropolis development (cities systemic models, digital twins, etc.)
 - Entangled with the Big Data economy
 - New policies, e.g. make all scientific data produced by H2020 open by default

- Building a full HPC ecosystem is imperative to ensure long term value creation
 - Part of the innovation and economic growth assets
 - Training new generation of scientists and engineers
 - Securing our own independent HPC system supply
How Are We Going There?

<table>
<thead>
<tr>
<th>Roadmap</th>
<th>EU Initiatives</th>
<th>Timing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic Research Agenda</td>
<td>Continuous effort</td>
<td></td>
</tr>
<tr>
<td>Eurolab4HPC Roadmap</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>HiPeac Roadmap</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>Pathways for convergence</td>
<td>Final at SC17</td>
<td>New version 2018</td>
</tr>
<tr>
<td>(participation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRACE Scientific Case</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Research | FET projects (RIA) | Continuous |

Technology	Integrated Projects (e.g. Mont-Blanc)	Ongoing
	Extreme Scale-Demonstrator (ETP4HPC)	start 2018
	European Low-Power Processor	start 2018

Infrastructure	PRACE2 (HPC centers)	Ongoing
	GEANT (networks)	Ongoing
	EOSC/EUDAT (European Data Infra.)	start 2018

| Application Development | Centers of Excellence (CoE) | Ongoing |
| | CEF HPC-OpenData | start 2018 |

| Economy | SMEs/Startups instruments | Ongoing |
Who is Going There?

Hundreds of loosely coupled entities to drive in the same direction

Includes about 260 entities:
- Academia: ~ 150
- Private sector: ~ 60
- FET Projects/CoEs: ~30
- others includes associations, …

Ecosystem as seen from EXDCI
Conclusion

- ETA for Exascale is currently 2023
- EU ecosystem is accelerating
 - More continuity in actions and organizations is helping (less reset from one call to another)
- EXDCI continuation
 - More emphasis on HPC & HPDA convergence
 - Coordination for the Extreme Scale Demonstrators
- EHPCSW 2018 in Slovenia
 - 28 May to 01 June 2018
 - Gather the EU HPC community (and others are welcome)
- BoF BDEC Wednesday 5:15pm (710-712)
 - Details about the pathways for convergence
An Update on the U.S. D.O.E. Exascale Computing Project –

Paul Messina
Argonne National Laboratory and
Inaugural Director, Exascale Computing Project

SC17
Denver, Colorado
November 14, 2017
ECP has multiple components to meet national goals

Performant mission and science applications @ scale

Foster application development
Ease of use
Two diverse architectures
US HPC leadership

Application Development
Software Technology
Hardware and Integration
Project Management

Develop and enhance the predictive capability of applications critical to the DOE
Produce expanded and vertically integrated software stack to achieve full potential of exascale computing
Integrated delivery of ECP KPPs and products on targeted systems at leading DOE computing facilities
Project scheduling, tracking cost tracking, analysis, and accountability across the entire project spread across the country
The work is carried out at many institutions

- 800+ Researchers
- 25 Application Development Projects
- 66 Software Development Projects
- 5 Co-Design Centers
Members of the ECP Industry Council
DOE supercomputing facilities will acquire and operate the exascale systems

• The mission of those facilities is to provide access to the most powerful computing systems at any given time

• Hence the ECP is working closely with the DOE supercomputing facilities to ensure that the systems meet the mission needs

• Current plans call for delivery of the first exascale system to Argonne National Laboratory in 2021, with additional exascale systems to follow at other SC and NNSA laboratories in 2021-2022 and over the next several years to meet identified mission needs
Intel Aurora supercomputer planned for 2018 shifted to 2021
Scaled up from 180 PF to over 1000 PF

Support for three “pillars”

Simulation

Data

Learning

Pre-planning review

Design review

Rebaseline review

NRE contract award

Build contract modification

ALCF-3 Facility and Site Prep, Commissioning

ALCF-3 ESP: Application Readiness

NRE: HW and SW engineering and productization

Build/Delivery

Acceptance

Argonne Targets for Exascale

Simulation Applications
- Materials Science
- Cosmology
- Molecular Dynamics
- Nuclear Reactor Modeling
- Combustion
- Quantum Computer Simulation
- Climate Modeling
- Power Grid
- Discrete Event Simulation
- Fusion Reactor Simulation
- Brain Simulation
- Transportation Networks

Big Data Applications
- APS Data Analysis
- HEP Data Analysis
- LSST Data Analysis
- SKA Data Analysis
- Metagenome Analysis
- Battery Design Search
- Graph Analysis
- Virtual Compound Library
- Neuroscience Data Analysis
- Genome Pipelines

Deep Learning Applications
- Drug Response Prediction
- Scientific Image Classification
- Scientific Text Understanding
- Materials Property Design
- Gravitational Lens Detection
- Feature Detection in 3D
- Street Scene Analysis
- Organism Design
- State Space Prediction
- Persistent Learning
- Hyperspectral Patterns
Co-design is the key to creating the ecosystem and there has been excellent progress.
The Exascale Computing Project (ECP)

Collaboration
- 2 US Department of Energy organizations
 - Office of Science
 - National Nuclear Security Administration

Execution
- 800+ researchers (22 laboratory and agency partners; 39 universities) engaged in:
 - 66 software projects
 - 25 science application projects
 - 5 co-design centers

Goal
- Drive pre-exascale science, application development, hardware and software R&D to ensure that the US has a capable exascale ecosystem in 2021
This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support of the nation’s exascale computing imperative.
Missions
• Building the Japanese national flagship supercomputer, post K, and
• Developing wide range of HPC applications, running on post K, in order to solve social and science issues in Japan

Project organization
• Post K Computer development
 • RIKEN AICS is in charge of development
 • Fujitsu is vendor partner.
 • International collaborations: DOE, JLESC, CEA
• Applications
 • The government selected
 • 9 social & scientific priority issues and their R&D organizations.
 • 4 Exploratory Issues

Status
• “Basic Design” was finalized and now in “Design and Implementation” phase.
• We have decided to choose ARM v8 with SVE as ISA for post-K manycore processor.
• We are working on detail evaluation by simulators and compilers

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
<tr>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
<td>Q4</td>
<td>Q1</td>
<td>Q2</td>
</tr>
</tbody>
</table>

Basic Design Design and Implementation Manufacturing, installation, and Tuning Operation
Post K’s Ecosystem

- ARM Community & OSS Community
 - Wide range of applications, tools, libraries, and compilers
 - Contributing to Open Source Community
- International Collaborations
 - DOE-MEXT
 - Optimized Memory Management, Efficient MPI for exascale, Dynamic Execution Runtime, Storage Architectures, Metadata and active storage, Storage as a Service, Parallel I/O Libraries, MiniApps for Exascale CoDesign, Performance Models for Proxy Apps, OpenMP/XMP Runtime, Programming Models for Heterogeneity, LLVM for vectorization, Power Monitoring and Control, Power Steering, Resilience API, Shared Fault Data, etc.
 - CEA
 - Programming Language, Runtime Environment, Energy-aware batch job scheduler
 - JLESC (NCSA, INRIA, ANL, BSC, JSC, RIKEN)

OpenHPC is a Linux Foundation Collaborative Project whose mission is to provide a reference collection of open-source HPC software components and best practices, lowering barriers to deployment, advancement, and use of modern HPC methods and tools.

The HPC SIG drives the adoption of ARM in HPC through the creation of a data center ecosystem. It is a collaborative project comprised of members and an advisory board. Current members include ARM, HiSilicon, Qualcomm, Fujitsu, Cavium, Red Hat and HPE. CERN and Riken are on the advisory board.
PANEL

MODERATOR: François Bodin – EXDCI

Jean-Pierre Panziera – ETP4HPC Chairman
Erwin Laure – KTH, BioExcel project
Sai Narasimhamurthy – Seagate, SAGE project
Etienne Walter – Atos, Mont-Blanc project
Paul Messina - Exascale Computing Project, US
Yutaka Ishikawa - Riken, Flagship 2020 project, Japan