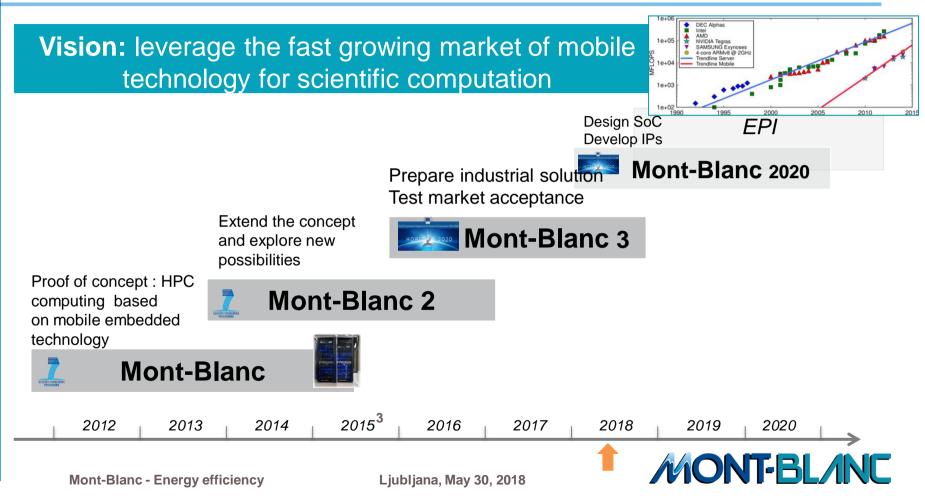


Energy efficiency @ Mont-Blanc

Etienne Walter, Bull with contributions from the whole team special thanks to Roxana Rositoru, Arm

ETP4HPC workshop, Ljubljana



This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement nº 671697

Mont-Blanc – Origin & context

The Mont-Blanc pitch

Mont-Blanc 3 key objectives

- Design a compute node based on ARM architecture for a pre-exascale system
 - Well balanced : Memory, Interconnect, IO
 - Use of simulation to evaluate the options on applications
 - Energy efficient
- Evaluate new high-end ARM core and accelerator, and assess different options for compute efficiency
 - Heterogeneous cores, vectorization, high performance core
 - Assessment with existing solutions & applications
- Develop the software ecosystem needed for market acceptance of ARM solutions

Key ideas: Well-balanced architecture, (Energy & Compute) Efficiency, Throughput computing, Co-design, SoC/SoP design

Prototypes Scientific applications **HPC** software ecosystem Barcelon Supercon Bull ARM UNIVERSITE DE н L R 5 🏽 AVL 2 NT-RI A

Mont-Blanc - Energy efficiency

A look at last HPCG results (Nov. 17)

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of
1	RIKEN Japan	K.computer – , SPARC64 VIIIfx 2.0GHz, Tofu interconnect rujitsu	705,024	10.510	10	0.603	5.3%
2	NSCC / Guangzhou China	Tianhe-2 (MilkyWay-2) – TH-IVB-FEP Cluster, Intel Xeon 12C 2.2GHz, TH Express 2, Inte Xeon Phi 31S1P 57-core NUDT	3,120,000	33.863	2	0.580	1.1%
3	DOE/NNSA/LANL/SNL USA	Trinity – Cray XC40, Intel Xeon E5-2698 v3 300160C 2.3GHz, Aries Cray	979,072	14.137	7	0.546	1.8%
4	CSCS Switzerland	Piz Daint – Cray XC50, Intel Xeon E5-2690v3 12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 L Cray	.6GB 361,760	19.590	3	0.486	1.9%
5	NSC Wuxi China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93.015	1	0.481	0.4%
6	Joint Center for Advance High Performance Computing Japan	^d Oakforest-PACS – PRIMERGY CX600 M1, Intel Xeon Phi Processor 7250 68C 1.4GHz, Inte Omni-Path Architecture Fujitsu	557,056	13.555	9	0.385	1.5%
7	DOE/SC/LBNL/NERSC USA	Cori – XC40, Intel Xeon Phi 7250 68C 1.4GHz, Cray Aries Cray	632,400	13.832	8	0.355	1.3%
8	DOE/NNSA/LLNL USA	Sequoia – IBM BlueGene/Q, PowerPC A2 1.6 GHz 16-core, 5D Torus IBM	1,572,864	17.173	6	0.330	1.6%
9	DOE/SC/Oak Ridge NL USA	Titan – Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray	560,640	17.590	5	0.322	1.2%
10	GSIC Center, Tokyo Japan	TSUBAME3.0 – SGI ICE XA (HPE SGI 8600), IP139-SXM2, Intel Xeon E5-2680 v4 15120C 2.9GHz, Intel Omni-Path Architecture, NVIDIA TESLA P100 SXM2 with NVLink HPE	136,080	8.125	13	0.189	1.6%

Diversity of hw platforms

Only a limited fraction of peak capacity used

Applications

Sw Environment

Hw. platform

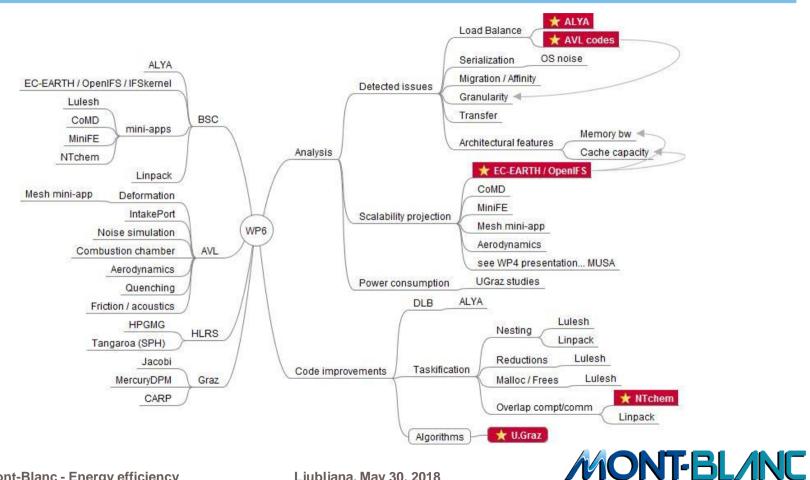
6

Scientific applications: methodology

Applications

- Benchmarks
- Mini-apps
- Production / Industrial codes

Tracing applications with the objective of...

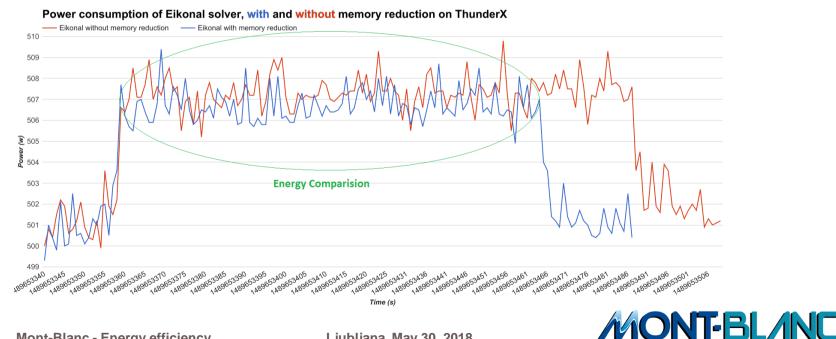

- Test current solutions and provide feedbacks to technology providers
 - Test SoC, e.g. PAPI on Cavium ThunderX
 - Measure power consumption and correlate it with performance
 - Evaluation of HPC Compiler(s)
- Understanding code limitations and helping the developers in restructuring it
 - applying OmpSs/OpenMP4.0 and analyze the effect
 - Benefit of taskification
 - Exploring new techniques, e.g. Dynamic Load Balancing
- Have insights to perform extrapolation studies using next generation machine parameters

Tech report: http://upcommons.upc.edu/handle/2117/107063

Poster accepted at SC'17

Applications

_



8

Power Efficiency improvements & measurements (Eikonal – U-Graz)

13% Energy Efficiency achieved by reducing memory footprint

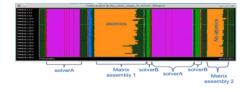
- Eikonal solver on the ThunderX cluster 20 cores @ 1.8GHz
- Physical measurements: Yokogawa Power Meter Monitoring for overall cluster.
- Time-to-solution improvement: 22%

Code/algorithms improvements (Alya – BSC)

Parallelize Finite Element codes

- Interaction Load balance and IPC
- Reductions with indirect accesses on large arrays

Taskification


- Towards throughput computing
- Dynamic Load Balancing helps in all cases

Coupling codes

 Almost constant performance independent of configuration and kind of coupling

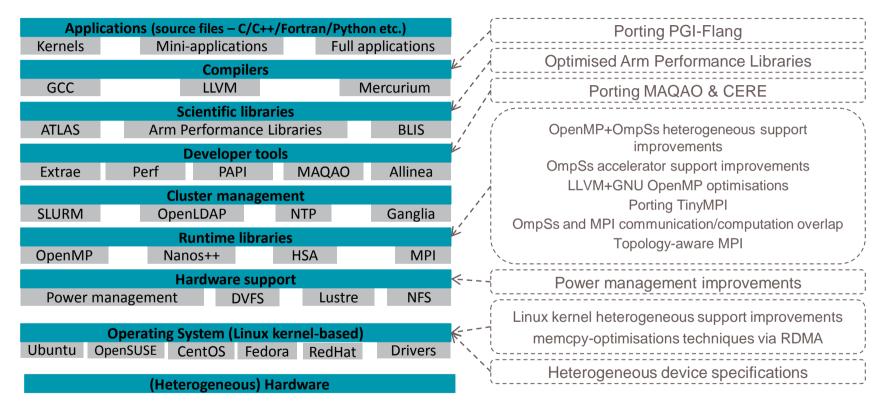
Scaling

- Scaling up to 16k cores
- Can manage fine granularities

Application issues

- Taskification
- Data layout
- Unused hardware resources
- Vectorization
- Memory bandwidth
- Dynamic load balance
- & more...

Courtesy of https://goo.gl/H56VpH


Applications

Sw Environment

Hw. platform

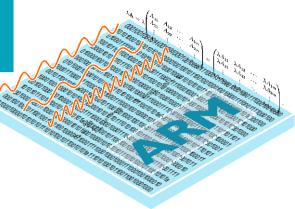
HPC Arm Software Stack

+ Contribution to OpenHPC (from 1.2)

HPC Arm Software Stack

Applica	ations (source files –	C/C++/Fortran/Py	thon etc.)			
Kernels	Mini-applica	tions Fu	Il applications			
Compilers						
GCC	LLVM Mercurium					
Scientific libraries						
ATLAS	Arm Performa	nce Libraries	BLIS			
Developer tools						
Extrae	Perf PAI	PI MAQAC) Allinea			
Cluster management						
SLURM	OpenLDAP	OpenLDAP NTP				
Runtime libraries						
OpenMP	Nanos++	HSA	MPI			
	Hardware support					
Power management DVFS Lustre NFS						
	Operating System (I					
Ubuntu Op	oenSUSE CentOS	Fedora RedHa	at Drivers			
(Heterogeneous) Hardware						

improvements mainly aiming (power) efficiency **Porting PGI-Flang Optimised Arm Performance Libraries Porting MAQAO & CERE OpenMP+OmpSs heterogeneous support** improvements **OmpSs accelerator support improvements** LLVM+GNU OpenMP optimisations **Porting TinyMPI OmpSs and MPI communication/computation** overlap **Topology-aware MPI Power management improvements** Linux kernel heterogeneous support improvements memcpy-optimisations techniques via RDMA Heterogeneous device specifications


+ Contribution to OpenHPC (from 1.2)

ARM Performance Libraries

Enable the wide variety of ARM cores available today without adding complexity to the software ecosystem.

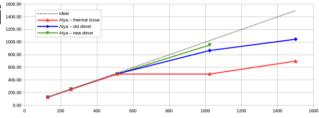
- Commercially supported 64-bit ARMv8 vendor math libraries for scientific computing.
- Built and validated using technology from the Arm Numerical Algorithms Group (NAG).
- → ARM silicon partners provide tuned kernels.

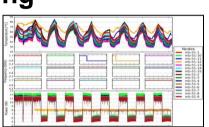
Capabilities:

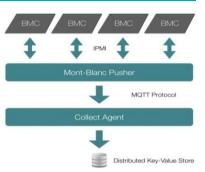
- → BLAS
- → LAPACK
- → FFT

Tuned for:

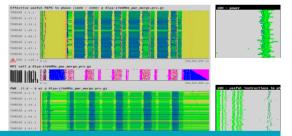
- Cortex-A53,A57,A72
- Applied Micro X-Gene[®]
- Cavium[®] ThunderX




Power management


(MB2/MB3)

Improve the Mont-Blanc power management infrastructure



Integrated with standard tools

- HDEEM, PARAVER to correlate performance and power consumption
- SLURM plugin for jobs energy accounting

- Make users/developpers aware of energy constraints, and able to integrate these constraints
- Development of energy aware job scheduling policies (Power Adaptive Scheduling)
- (PAS) & Energetic Fairshare Scheduling (EFS) (Bull & LRZ)

Applications

Sw Environment

Hw. platform

Dibona: our new test platform

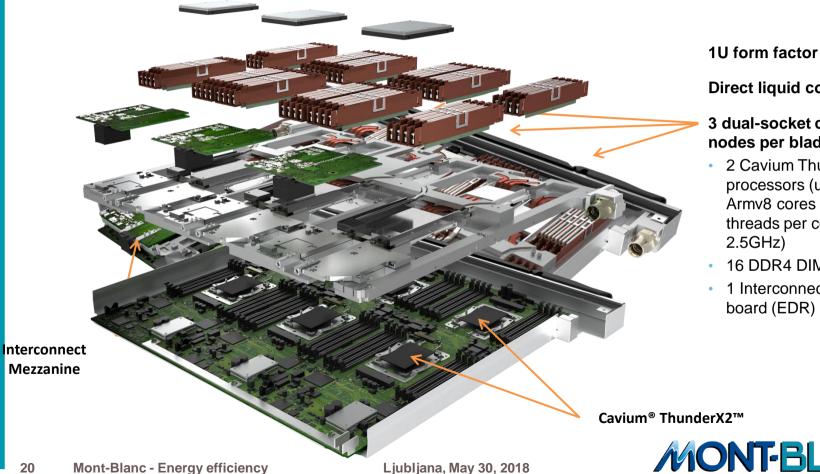
18 Mont-Blanc - Energy efficiency

Dibona (Mont-Blanc 3 test platform)

Power supply units

48 computes nodes: 16 blades 96 CPUs 3000 cores 12000 threads

Hydraulics for Direct Liquid Cooling (ultraenergy efficient with hot water cooling)

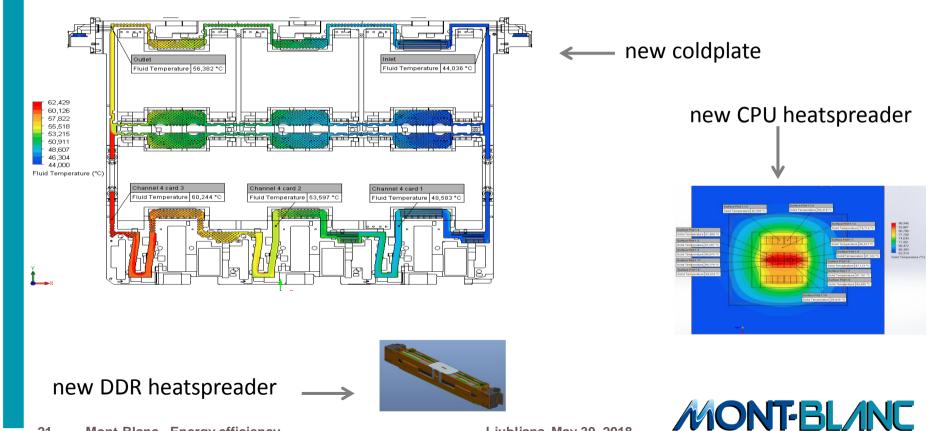

Redundant management server including storage

IB EDR switches

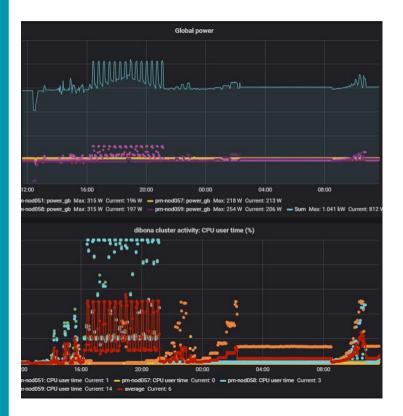
Internal Ethernet management network

Cavium ThunderX2 choice

Direct liquid cooling

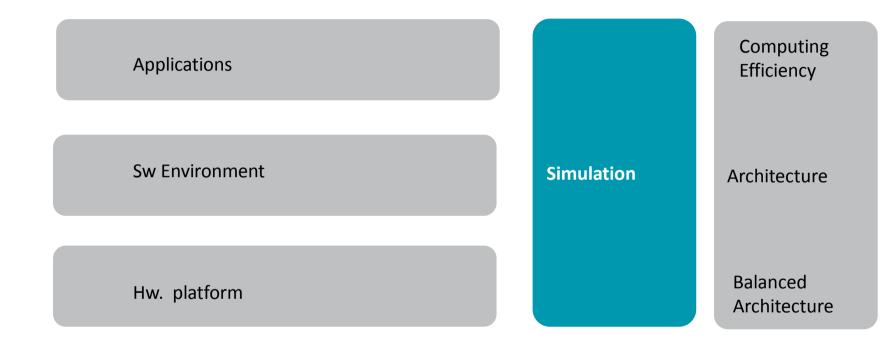

3 dual-socket compute nodes per blade with:

- 2 Cavium ThunderX2 processors (up to 32 Armv8 cores per CPU, 4 threads per core, up to 2.5GHz)
- 16 DDR4 DIMM slots
- 1 Interconnect mezzanine board (EDR)


Cavium[®] ThunderX2[™]

CVN thermal design & mechanical enclosure

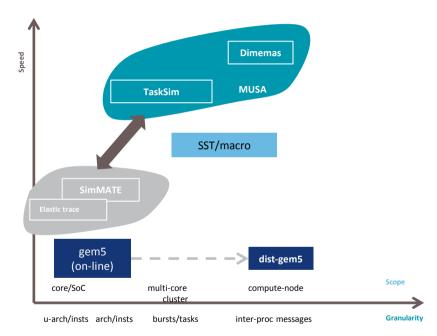
HDEEM Energy accounting @ Dibona



- Original work initiated with TU Desden, and implemented in Mont-Blanc (1) cluster
- Now implemented in Dibona

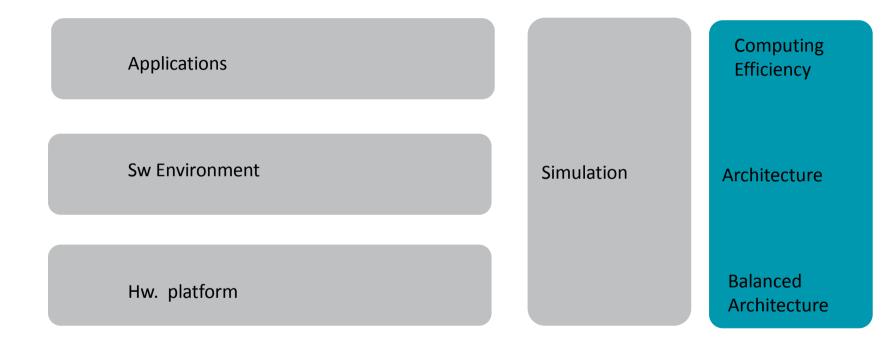
Energy accounting characteristics:

- Energy cumulated through time (Blade + VRs + NICs) in Joules
- High frequency FPGA energy calculation (100Hz for VRs, 1000Hz for Blade)


MONT-BL/INC

Simulation Tools

Name	on- line/of fline	scope	granularity	speed(up)	
gem5 (classic memory)	on-line	core/SoC	u-arch/insts	~100-200 KIPS	
Elastic trace (gem5)	off-line	interconnect/mem ory system	u-arch/insts	~ 7x (gem5)	
SimMATE (gem5)	off-line	memory system	u-arch/insts	~6x – 800x (gem5)	
Garnet (gem5)	on-line	interconnect		~0.2x (gem5)	
TaskSim	off-line	compute node/task scheduler	arch/tasks	~ 10x native (burst) ~20x gem5 (memory)	
Dimemas	off-line	cluster/off-chip network	bursts/ messages	"very fast"	
SST/macro	on-line	cluster/off-chip network	bursts/ messages	~ 0.3-3x native	



Simulation tools map

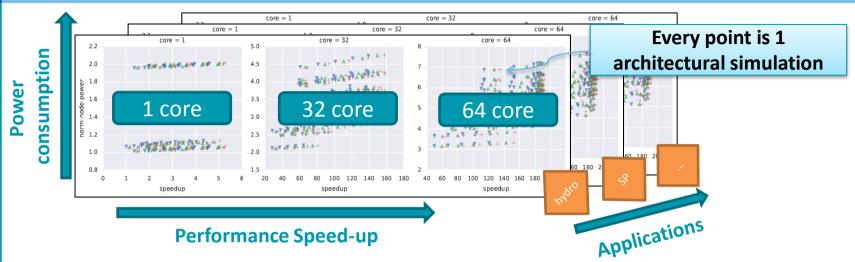
Integration in a global framework

Design Space Exploration (DSE)

New Experiments

SIMULATOR PARAMETERS/COMPONENTS							
Cores	lssue width / ROB	Frequency	Cache size L3 / L2	Memory	Vector width		
1	2 / 40 (lo-end)	1.5	64MB/1MB	4ch DDR4	128		
32	4 / 180 (thunX)	2.0	32MB/1MB	8ch DDR4	256		
64	6/224 (skylak)	2.5	32MB/256K		512		
_	8/300 (hi-end)	3.0	_	_	_		
Simulate every possible combination of these							
865 detailed arch simulations per app							

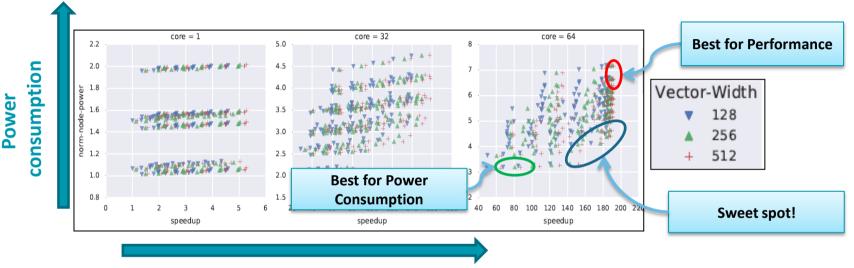
New Features


- FP <u>Vector Width</u> Simulation
- Chip and Main Mem.
 Power measurements

Applications

 BT, SP, Hydro, LULESH, Specfem3D

MUSA DSE Results: (BSC)


Results of this extended space exploration

- Wide study across architectural components
 - Interaction between components
 - Power / Performance tradeoffs
- Identifying trends and optimal cases. Understanding bottlenecks.

MUSA DSE Results: Exploration (HYDRO)

Example: Identifying Optimal Cases

Performance Speed-up

- Hydro simulation: 1 Rank during 1 iteration.
- 400 Architectural configurations per Core
- Legend coded by Vector Width used in the simulation

Scalable Vector Extension (SVE)

- Vector Length (VL) is a hardware choice, from 128 to 2048 bits, in increments of 128
- Vector Length Agnostic (VLA) programming adjusts dynamically to the available VL
- No need to recompile, or to rewrite handcoded SVE assembler or C intrinsics
- SVE is not an extension of Advanced SIMD
 - Focus is HPC scientific workloads
- SVE also begins to address some of the traditional barriers to auto-vectorization

Key Architectural Features

- Scalable vector length (up to a current maximum of 2048 bits)
- Vector length Agnosticism
- Per-lane predication
- ✓ Gather-load and scatter-store
- ✓ Fault-tolerant speculative vectorization
- Vector partitioning
- Horizontal and serialized vector operations

ARM big.LITTLE

- High performance and high efficiency cache coherent CPU clusters
- Use the right processor at the right time
- Potential for energy savings
- Flexible and transparent to the applications
 - Enabled by the Global Task Scheduling (GTS) or Energy Aware Scheduling (EAS)

PoC

- Simulation (on Juno development card)
- To be emulated on our Dibona cluster (BIOS settings permitting to define core frequency (at core level))

DAST

- Move runtime overhead to an additional thread (task & dependence management)
- Implemented on top of OmpSs (a research runtime similar to OpenMP)
 - Unit of compute: task

Functionalities

- Task [allocation and] submission within OmpSs
- Push/pop tasks to/from the task graph

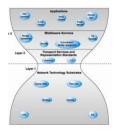
→ Use big or LITTLE cores to execute DAST

Platform:

Odroid-XU3 platform, ARM v7 (4xA7, 4xA15, 2GB RAM), Linux version 3.10.92

Takeaway

No more silver bullet (Moore law is fading)


Energy efficiency is a long term goal – efforts need to be sustained

- at all level: holistic approach needed
- need to create the right tools for such a global approach
 - common abstraction
 - energy monitoring / control tools

A kind of hourglass model

- Many apps, many hw
- Interoperability needed however
- and also in time dimension:
 - Apps & hw : different lifecycles
 - but a need for common objectives

Hws

Thank you for your attention

etienne.walter@atos.net

Credits : Mont-Blanc partners (third phase but also first & second phases)

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement nº 671697

