Deeply Heterogeneous HPC Systems with QoS Guarantees for Europe

Prague, EsD Workshop, May 2016

José Flich, Universitat Politècnica de València
Outline

- MANGO project and Consortium
- Capacity Computing
- Interconnect and heterogeneity as Enablers
- MANGO prototype as input
- Our plans
MANGO project and Consortium

- **MANGO**: exploring Manycore Architectures for Next-Generation HPC systems
 - started Oct. 2015, budget ≈ 6M€
 - Currently at M8

- Universitat Politècnica de València (SPAIN)
- CeRICT / University of Naples (ITALY)
- Politecnico di Milano (ITALY)
- Zagreb University (CROATIA)
- Pro Design GmbH (GERMANY)
- Thales Communication & Security (FRANCE)
- EPFL (SWITZERLAND)
- Philips Medical Systems (NETHERLAND)
- Eaton Industries SAS (FRANCE)
MANGO: Exploiting the PPP design space

Predictability/Quality of Service

Unsustainable high-end computing

Performance-constrained/Embedded computing

Performance

Dedicated HPC with no QoS support

Power Efficiency
Cases for time requirements

- Financial applications (high frequency trading)
- Biomedical applications
 - realtime biomedical diagnosis
- Multimedia applications
 - transcoding
- Video surveillance/security
- BigData is merging with HPC
 - CyberPhysical Systems
 - Smart Cities
 - Internet of Things
Capacity Computing

- Capacity Computing
 - Run as many applications as possible
 - Many application instances (users, data sets)

- Capability Computing
 - Run an application as fast as possible
New requirements

- **Security**
 - Guaranteeing applications do not interfere

- **Virtualization of resources**
 - Guaranteeing resources used exclusively by applications

- **Network and heterogeneity** to guarantee **efficient capacity computing**

- The network is at central to this approach
 - Needs to guarantee means of partitioning, reconfiguration, and isolation
 - Needs to guarantee proper bandwidth and latency allocation
 - Needs to guarantee jitter bounds
Advanced on-chip interconnect (NoC)

Low-power RISC cores coexist with massively-parallel heterogeneous accelerators (SIMD/GPU-like/FPGA)

Custom Network-on-Node extends the NoC across the chip boundary

Architecture-, NoC-, and Non-level partitioning mechanisms for QoS guarantees
Deeply Heterogeneous acceleration Nodes (HN)

Virtual Architecture 1

Virtual Architecture 2

idle resources

Virtual Architecture 3

Virtual Architecture 4
MANGO prototype as input

The MANGO platform

Compute platform

Emulation platform

Innovative Cooling and Power Monitoring
MANGO prototype as input

- Pro-Design proFPGA quad V7 Prototyping system
 - Scalable up to 48 M ASIC gates capacity on one board
 - Modular with up to 4 x Xilinx Virtex XC7V2000T FPGAs, or Zynq-7000, or memory modules
 - Up to 4336 signals for I/O and inter FPGA connection
 - Up to 32 individually adjustable voltage regions
 - Up to 1.8 Gbps/12.5 Gbps point to point speed
Our plans...

- MANGO architectures deployed
- Ready for chip design/deployment
- MANGO hardware/software ecosystem ready for exploitation
- Advanced high-volume reconfigurable server

MANGO partners see collaboration opportunities with FPGA-related projects: GreenFLASH, EXTRA
Other collaboration opportunities are with global ecosystem: CoEs, FET HPC projects