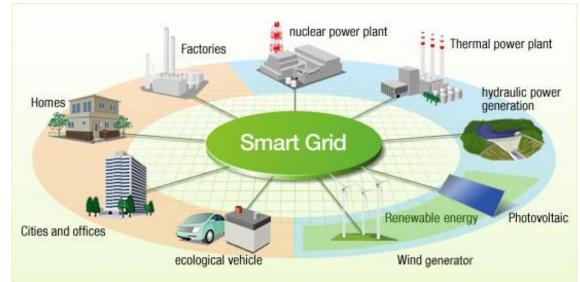


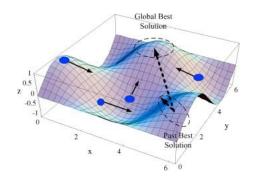
Challenges, R&D priorities and European actions

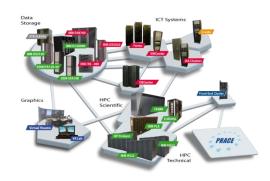
JF Lavignon, Bull ETP4HPC Chairman



HPC in the loop: smart grid

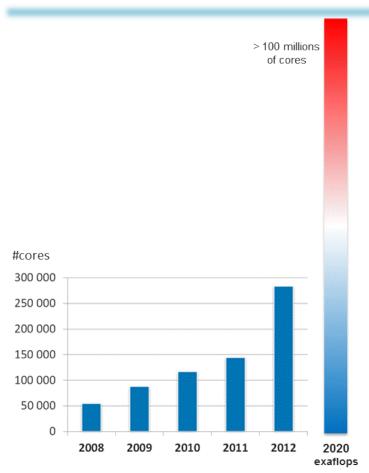
- Huge system
 - 34 interconnected countries in Europe
 - 530 M inhabitants
 - 300,000 km network
 - 880 GW production
 - 3,200 TWh consumed (with more than 10% exchanged)
- Complex optimization and control problem
 - More and more data available
 - Complex models and interactions
- Big stakes


In the US, 67% of the electricity is wasted in production, transport and distribution



HPC technologies for system control

- New algorithms
 - Time constraint optimization
 - Data integration
- New architectures
 - Integration of data streams
 - Connection to real time control system
- New system software
 - Time control
 - Interaction with operator
- Application to other fields: fire, flooding ... management, smart cities...



Meeting the Application challenges with parallelism

EXAFLOP: Number of cores increases exponentially

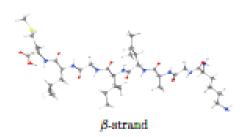
Average number of cores per supercomputer (Top 20 of Top 500)

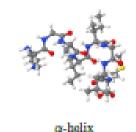
The Current Situation:

- Only 1% of SW are capable to exploit 10 000 processors
- It takes 5 to 10 years in average to rewrite an application
- 50% of IT managers said that their applications scaled at a maximum of 120 cores (2011 survey, Addison Snell)

The two-fold Challenge:

- 1. Keep the early adopters on path (capture the full benefits of the performance from thousands of processors to millions of cores)
- 2. Bring all the others in the game





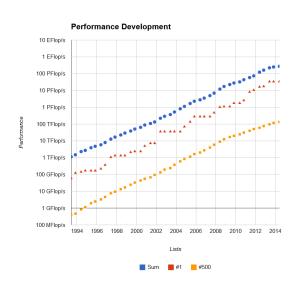
New methods : chemistry example

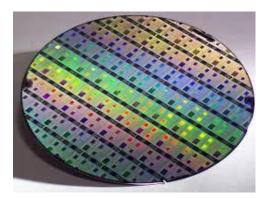
Scientific problem

- Prediction of chemical properties
 - Drug design, electronics industry, material, biochemistry...

Standard methods

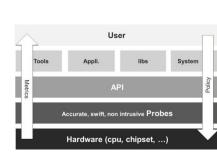
- Density Functional Theory, post Hartree-Fock
- Solving the Partial Differential Equation for the unknown wave function
- Introduction of approximation to reduce dimension problem
- CPU intensive with communication


New approach


- Quantum Monte Carlo stochastic method
- Exploration of configuration space using Markov chain to visit only the most probable states
- Still some investigation at theoretical level
- Able to use parallelism, non blocking communication
- Resilient system

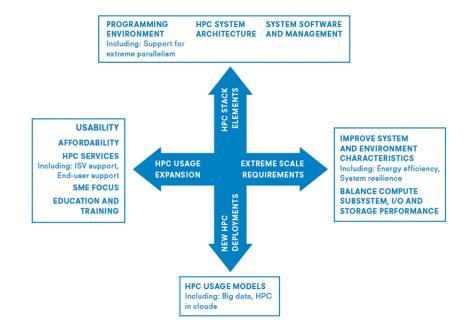
The power challenges

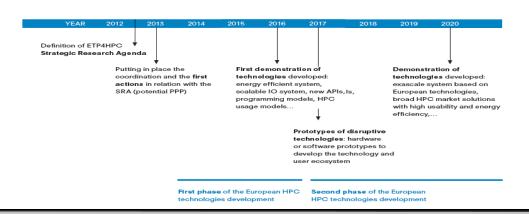
- HPC power trends over 20 years
 - Performance: #1 x by 560,00054 times more than Moore Laws
 - Power : 18 MW110 times the power
- Silicon process
 - Power density increase
 - Low frequency can reduce power but increase the concurrency



Energy efficiency R&D

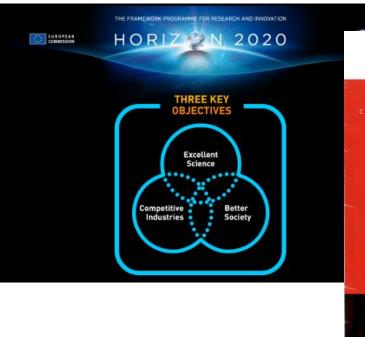
- Over a short period PUE from 1.7 to 1.1
- Power monitoring
 - Getting the understanding of performance and energy consumption
- Power management at hardware level
 - Dark silicon
 - Optimal settings
- Optimization at HPC system level
 - Workload control and optimization
- APIs between application level information and system level features





Strategic Research Agenda: a multi-dimensional vision

www.etp4hpc.eu



What action in Europe?

European policy vision

High-Pe

Europe's

COUNCIL OF THE EUROPEAN UNION

Conclusions on 'High Performance Computing: Europe's place in a Global Race'

3242nd COMPETITIVENESS (Internal Market, Industry, Research and Space)
Council meeting
Brussels, 29 and 30 May 2013

The Council adopted the following conclusions:

"THE COUNCIL OF THE EUROPEAN UNION

RECALLING

- the conclusions of the European Council of 11 and 12 December 2008¹, which called for the launching of a European plan for innovation, combined with the development of the ERA and with reflection on the future of the Lisbon Strategy beyond 2010;
- its conclusions of 29 May 2009² on Research Infrastructures and the regional dimension of the ERA which called on the Commission to pursue sustainability, global connectivity, interoperability and unimpeded use of pan-European e-Infrastructures, and on the Member States to consider the role of e-Infrastructures in their national roadmaps and/or programmes for research infrastructures:

February 2012

May 2013

Interrelation between three elements

Access to best HPC for industry and academia (PRACE)

Excellent Science e-infrastructures

 specifications of exascale prototypes

 technological options for future systems **EU development of Exascale technologies**

FET/HPC

- Collaboration of HPC Supercomputing Centres and application CoEs
- provision of HPC capabilities and expertise
- Users identification of computational needs

Excellence in HPC applications (Centres of Excellence)

Excellent Science

- e-infrastructures

- identify applications for codesign of exascale systems
- Innovative methods and algorithms for extreme parallelism of traditional/emerging applications

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE

PRACE → the European HPC Research Infrastructure

- Enabling world-class science through large scale simulations
- Providing HPC services on leading edge capability systems
- Operating as a single entity to give access to world-class supercomputers
- Attract, train and retain competences
- Lead the integration of a highly effective HPC ecosystem
- Offering its resources through a single and fair pan-European peer review process to academia and industry

- **25** members, since 2010
- 6 supercomputers in 4 hosting countries, nearly 15
 Pflop/s
- Common operation procedure between 35 centers in Europe
- 22 prototypes evaluated
- 169 white papers produced
- 1500 communications from our users
- 166 Thesis
- HPC Community building:183 events
- 8 billion hours granted since 2010 (a system with 900k cores for 1 year)
- 303 scientific projects enabled from 38 countries
- More than 20 SME and industries access in first year
- 360 PATC Training days
- 2734 Trained people
- 170 applications enabled

Partnership for European leardership in HPC

cPPP in a nutshell

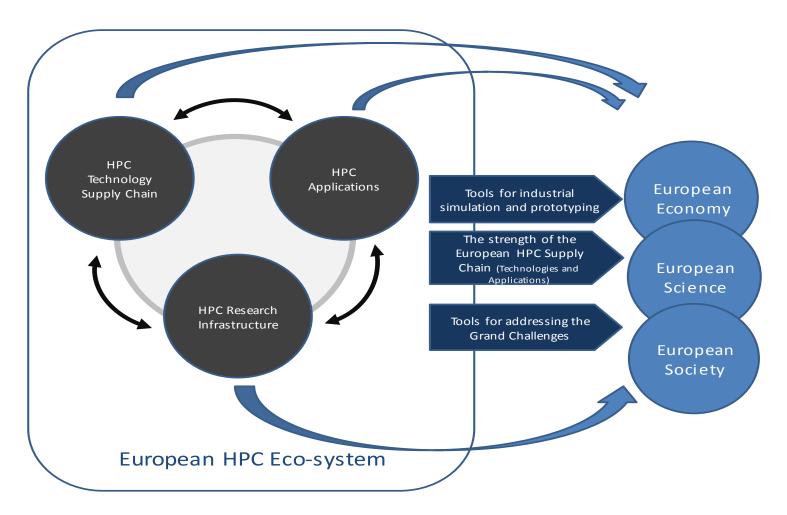
- Mutual commitments
 - EC: continuous support of HPC in Horizon 2020: 700 M€
 - HPC community: R&D investment matching EC effort + industrial development
- Coordination of the action
 - Advices from stakeholders to EC
 - Management of the work programmes by the EC
 - Preparation of roadmaps proposing the vision
 - Common monitoring of Key Progress Indicators

FETHPC Call

FETHPC 1: HPC core Technologies, Programming Environments and Algorithms for Extreme Parallelism and Extreme Data Applications

- > Proposals shall target one of the following subtopics:
 - a) HPC core technologies and architectures
 - b) Programming methodologies, environments, languages and tools
 - c) APIs and system software for future extreme scale systems
 - d) New mathematical and algorithmic approaches

Budget: 93.4 M€


Deadline: 25/11/2014

HPC Centres of Excellence (HPC CoE)

Specific challenge:

- Establish a limited number of user-centred Centres of Excellence (CoE) in the application of HPC for addressing scientific, industrial or societal challenges
 - CoEs may be
 - 'thematic':
 - addressing specific application domains such as medicine, life science or energy
 - 'transversal':
 - on computational science (e.g. algorithms, analytics, numerical methods etc.)
 - 'challenge-driven':
 - addressing societal or industrial challenges (e.g. ageing, climate change, clean transport etc.); or a combination of these types.

HPC cPPP – Building a European HPC Ecosystem

