
Bo Kågström, Lennart Edblom, Lars Karlsson; Laura Grigori; Iain Duff, Jonathan Hogg; Jack Dongarra, and Nick Higham

Ume̊a University, Sweden; Inria Paris-Rocqueancourt, France; RAL—Science Technology Facilities Council, UK; and
University of Manchester, UK

NLAFET—Aim and Main Research Objectives

Aim: Enable a radical improvement in the performance and scalability of a wide range of real-world
applications relying on linear algebra software for future extreme-scale systems.

I Development of novel architecture-aware algorithms that expose as much parallelism as possible,
exploit heterogeneity, avoid communication bottlenecks, respond to escalating fault rates, and help
meet emerging power constraints

I Exploration of advanced scheduling strategies and runtime systems focusing on the extreme scale
and strong scalability in multi/many-core and hybrid environments

I Design and evaluation of novel strategies and software support for both offline and online
auto-tuning

I Results will appear in the open source NLAFET software library

WP2, WP3 and WP4 at a glance!

I Linear Systems Solvers

I Hybrid BLAS

I Eigenvalue Problem Solvers

I Singular Value Decomposition Algorithms

I Lower Bounds on Communication for Sparse Matrices

I Direct Methods for (Near–)Symmetric Systems

I Direct Methods for Highly Unsymmetric Systems

I Hybrid Direct–Iterative Methods

I Computational Kernels for Preconditioned Iterative Methods

I Iterative Methods: use p vectors per it, nearest-neighbor comm

I Preconditioners: multi-level, comm. reducing

WP6: Cross-cutting issues and challenges!

Extreme-scale systems are hierarchical and heterogeneous in nature!

I Scheduling and Runtime Systems:
. Task-graph-based multi-level scheduler for multi-level parallelism
. Investigate user-guided schedulers: application-dependent balance between locality, concurrency,

and scheduling overhead
. Run-time system based on parallelizing critical tasks (Ax = λBx)
. Address the thread-to-core mapping problem

I Auto-Tuning:
. Off-line: tuning of critical numerical kernels across hybrid systems
. Run-time: use feedback during and/or between executions on similar problems to tune in later

stages of the algorithm

I Algorithm-Based Fault Tolerance:
. Explore new NLA methods of resilence and develop algorithms with these capabilities.

Generalized eigenvalue problem—need for autotuning!

Find pairs of eigenvalues λ and eigenvectors x s.t.
Ax = λBx

A B

1.

2.

H T

3.

S T

1. QR factorization

2. Hessenberg-Triangular reduction

3. QZ algorithm (generalized Schur decomposition)

Tunable parameters in
state-of-the-art parallel QZ algorithm:

nmin1 algorithm selection threshold
nmin2 algorithm selection threshold
nmin3 parallelization threshold
PAED # processors for subproblems
MMULT level-3 BLAS threshold
NCB cache-blocking block size
NIBBLE loop break threshold
nAED AED deflation window size
nshift #shifts per iteration
NUMWIN # deflation windows
WINEIG eigenvalues per window
WINSIZE window size
WNEICR #eigenvalues moved together

NLAFET Work Package Overview

WP1

WP2 WP3 WP4

WP5

WP6

WP7

I WP1: Management and coordination

I WP5: Challenging applications—a selection
Materials science, power systems, study of energy
solutions, and data analysis in astrophysics

I WP7: Dissemination and community outreach
Research and validation results; stakeholder
communities

Research Focus—Critical set of fundamental LA operations

I WP2: Dense linear systems and eigenvalue problem solvers

I WP3: Direct solution of sparse linear systems

I WP4: Communication-optimal algorithms for iterative methods

I WP6: Cross-cutting issues

WP2, WP3 and WP4: research into extreme-scale parallel algorithms
WP6: research into methods for solving common cross-cutting issues

Avoid Communications—extreme-scale systems accentuate the need!

Algorithms have two costs (measured in time or energy):

1. Arithmetic (Flops)

2. Communication: moving data between
. levels of a memory hierarchy (sequential case)

. processors over a network (parallel case).

Running time of an algorithm involves three terms:

I # Flops ∗ Time per flop

I # Words moved / Bandwidth

I # Messages ∗ Latency

Time per flop � 1/ Bandwidth � Latency

Gaps growing “exponential” with time
Annual improvements

Time per flop Bandwidth Latency
59% Network 26% 15%

DRAM 23% 5%

Goal: Redesign algorithms (or invent new) to avoid communication!
Attain lower bounds on communication if possible!

Task-graph-based scheduling and run-time systems

I Express algorithmic dataflow,
not explicit data movement

I Blocked Cholesky tasks: POTRF,
TRSM, GEMM, SYRK

I PTG representation: symbolic, problem
size independent

I Data flow based execution using PaRSEC
(ICL-UTK)

I Assigns computations threads to cores; overlaps
comm. & comp.

I Distributed dynamic scheduler based on NUMA
nodes and data reuse

Figure 1: Cholesky PTG run by PaRSEC; 45% improvement

Acknowledgments

I NLAFET has received funding from the European Unions Horizon 2020 Research and Innovation
Programme under Grant agreement No 671633.

Contact Information

I NLAFET Coordinator: Prof. Bo Kågström (bokg@cs.umu.se)
Dept. of Computing Science and HPC2N, Ume̊a University, Sweden

I Web-site: http://www.nlafet.eu Email: info@nlafet.eu

NLAFET Partners

mailto:bokg@cs.umu.se
http://www.nlafet.eu
mailto:nlafet@cs.umu.se

