

Mont-Blanc work Past, present & future

Etienne WALTER, Project manager (Bull/Atos)
Coordinator of Mont-Blanc phase 3

Mont-Blanc 3 key objectives

- Design a compute node based on ARM architecture for a preexascale system
 - Well balanced: Memory, Interconnect, IO
 - Simulation will be used to evaluate the options on applications
- Evaluate new high-end ARM core and accelerator, and assess different options for compute efficiency
 - Heterogeneous cores, new option for VPU, high performance core
 - Some assessment with existing solutions will be done using applications
 - One key idea: prepare to transform applications from being latency limited to throughput limited
- Develop the software ecosystem needed for market acceptance of ARM solutions

Our vision:

- One single solution cannot optimally fit the needs of all HPC apps
 - however economical efficiency requires generic solutions
 - need for an architecture flexible enough to permit and facilitate adaptation
- Need to allow « good independence » of HPC app from underneath hw
 - need therefore to
 - provide programmers with the right programming paradigms
 - work hard on processor performance
 - & propose evolution path for legacy applications
 - kind of "loose coupling" model between apps & platform developments
 - > SVE's vector-length agnosticism is a good example

Anticipated technologies (hw/sw/methodology)

Multiscale simulation methodology

Software ecosystem

Nextgen SoC requirements& design

Global system architecture

More has to be done

(Provided)

- Nextgen SoC requirements & design
- Multiscale simulation methodology
- ✓ Software stack
- Global system architecture

Needed (non exhaustive list)

- → SoC procurement
- Accelerators
- Data storage & mgt enhancement
- Enhanced programming models
- A committed set of use cases
- **→** ...

EsD perspective

We (collectively) have to deliver, and to be user-oriented (applications, reliability, ease of use ...)

It is a matter of

- cooperation
- technological choices (value added, maturity, complementarity ...)
- integration
- co-design
- Exascale is a collective journey
 - we're probably just in the middle

Thank you for your attention

etienne.walter@atos.net

Backup slides

Name	on- line/of fline	scope	granularity	speed(up)
gem5 (classic memory)	on-line	core/SoC	u-arch/insts	~100-200 KIPS
Elastic trace (gem5)	off-line	interconnect/mem ory system	u-arch/insts	~ 7x (gem5)
SimMATE (gem5)	off-line	memory system	u-arch/insts	~6x – 800x (gem5)
Garnet (gem5)	on-line	interconnect		~0.2x (gem5)
TaskSim	off-line	compute node/task scheduler	arch/tasks	~ 10x native (burst) ~20x gem5 (memory)
Dimemas	off-line	cluster/off-chip network	bursts/ messages	"very fast"
SST/macro	on-line	cluster/off-chip network	bursts/ messages	~ 0.3-3x native

Simulation tools evaluation

Integration in a global framework

HPC ARM Software Stack

Integration in industrial design (Bull sequana island)

