

European Exascale Processor & Memory Node Design

www.exanode.eu

ExaNoDe Contrubutions to Extreme-Scale Demonstrators

Denis DUTOIT

CEA

18th May 2017, 2-7pm, Barcelona, Catalunya @ European HPC Summit Week

Disclaimer: This presentation does not represent the opinion of the EC and the EC is not responsible for any use that might be made of information appearing herein.

ExaNoDe Project

ExaNoDe is about compute node aiming:

- Energy Efficiency.
- Dense Integration.
- Affordability.

ExaNoDe Core Technologies for compute node:

- System architecture:
 - ARMv8, GAS and coherent island
- Silicon Integration:
 - 3D integration/chiplet/interposer
 - Multi-chip-Module
- Software stack:
 - FW, OS, Virtualization, Programming models, Runtimes, Miniapps

Micro-bump

ExaNoDe objectives:

- To deliver a compute element integrating core technologies consistent with HPC system sizings and requirements for exascale computing.
- To validate core technologies applicability across a relevant set of HPC application domains.

ExaNoDe eco-system:

Compute node

FETHPC-2014

Interconnect, storage & cooling

EuroEXA

Chiplet

Hardware

Internose

FETHPC-2016

Suggested technologies for inclusion in an EsD

ExaNoDe prototype

Test Bed

SW stack

Board

Multi-Chip-Module

Interposer & 3D Integrated Circuit

System-on-Chip

ExaNoDe technologies

Mini-apps

Programming models

Virtualization

Checkpointing

Support for FPGA (SW)

Multi-Chip-Module

FPGA integration (HW)

HW support for GAS

3D Integration

Active interposer

3D design methodology

HW accelerator integration

Chip-to-chip communication

ExaNoDe technologies: type

ExaNoDe prototype

ExaNoDe technologies

Test Bed

SW stack

Board

Mini-apps
Runtime systems

- ExaNoDe prototype physicaly and logicaly compatible with ExaNeSt/EcoScale
 - SW stack (SW IP or extension)
 - Methodology (co-design)

Mini-apps

Programming models

Virtualization

Checkpointing

Support for FPGA (SW)

Multi-Chip-Module

- Module (x2 FPGA + x1 3D-IC)
 - HW IPs (FPGA)
 - Methodology (integration)

18.05.2017

Multi-Chip-Module

FPGA integration (HW)

HW support for GAS

3D Integration

Interposer

& 3D Integrated Circuit

System-on-Chip

- HW IPs (SoC)
- Methodology (design & integration)

Active interposer

3D design methodology

HW accelerator integration

Chip-to-chip communication

ExaNoDe technologies: maturity and reusability

• Maturity:

all technologies will be integrated and validated into the ExaNoDe prototype.

Reusability:

 Technologies are developed to be as generic as possible, but extra work for adaptation into specific project requirements may be required.

Thank you!

European Exascale Processor & Memory Node Design