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Executive summary 
The objective of this document is to answer two key questions that arose as the European High-
Performance Computing (HPC) ecosystem approached the end of the Horizon 2020 research 
programme, i.e.: 

“What will be the role of High-Performance Computing in the 2021-2027 period?” 

“How should one derive the main HPC research priorities for the next  
framework programme?” 

The Authors intend to sketch the big picture of the major trends in the deployment of HPC and 
HPDA methods and systems, driven by the economic and societal needs of Europe, taking into 
account the changes expected in the underlying technologies and the overall architecture of 
the expanding underlying IT infrastructure.  

Within the framework of the next long-term EU budget for 2021-2027, the EC has proposed 
substantial investments to consolidate Europe’s digital capacity and infrastructure and support 
the digital single market. This Multiannual Financial framework (MFF) includes two major pro-
grammes: Digital Europe - to support R&D for the development of European HPC technology, 
and Horizon Europe – to procure new supercomputing systems. 

The EC plans to develop and reinforce the European high-performance computing and data 
processing capabilities to achieve exascale capabilities by 2022-2023 and post-exascale facilities 
by 2026 or 2027. The EuroHPC Joint Undertaking1 provides mechanisms to implement this strat-
egy: a joint procurement framework, EU-level coordination and the pooling of financing, net-
working of national capacities and deployment of technology when it becomes available.  

In order to develop the future work programmes addressing the challenges of the next genera-
tion IT infrastructure for HPC imposed by the strategy above, EuroHPC requires recommenda-
tions for research priorities from the European HPC community. By December 2019, ETP4HPC, 
the European Technology Platform for High Performance Computing, will deliver its fourth Stra-
tegic Research Agenda (SRA 4 – also called “Agenda” in the remaining part of the text), which 
will include those priorities. SRA 4 is a deliverable of EXDCI-22, a currently running coordination 
and support action (CSA) coordinating the European ecosystem. 

This document presents a “Blueprint” for SRA 4. It outlines the “big themes” that will drive the 
selection of research priorities as potential building blocks of the future research calls in High 
Performance Computing. The methodology used in the process of preparing the Agenda and 
providing it as an input into EuroHPC’s internal mechanisms is also explained.  

This document and the upcoming SRA 4 is the work of experts associated with ETP4HPC in col-
laboration with:  

• BDVA (Big Data Value Association), the other private-side member of EuroHPC’s “Research 
and Innovation Advisory Group” (both ETP4HPC and BDVA will collaborate in the prepara-
tion of EuroHPC’s Strategic Research and Innovation Agenda in the area of HPC and HPDA); 

• HiPEAC and BDEC, two projects managing the European expertise in the area of system ar-
chitectures and long-term big data and computing trends, respectively; 

• the HPC Centres of Excellence and PRACE, which have provided valuable input on the needs 
of application users; 

• AIOTI (Alliance for the Internet of Things Innovation) – we are developing a collaboration 
with this organisation in order to align the recommendations in the HPC/HPDA and IoT do-
mains; 

• the European Processor Initiative (EPI), as the cornerstone of the EuroHPC strategy, will also 
provide input to the upcoming SRA.   

This document and SRA-4 delineate the priorities for the next five years, up to the expected 
availability of exascale supercomputers. To achieve that goal, ambitious development efforts 

                                                                                       
1 See report on the Digital Europe Programme: http://www.europarl.europa.eu/Reg-
Data/etudes/BRIE/2018/628231/EPRS_BRI(2018)628231_EN.pdf  
2 https://exdci.eu/about-exdci 
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are required - using the best-of-breed technology, novel approaches in system architecture and 
system-to-application co-design in order to master the challenges arising from scalability, ro-
bustness and power efficiency requirements.  

Looking beyond 2020, HPC-related research will undergo a significant change as tomorrow’s 
deployment scenarios for simulation and modelling will be extended to use cases outside of 
compute centres. We present, discuss and analyse this new situation. The term “co-design” in 
the future will not only mean an integrative, open, joint and focussed design approach between 
system and application specialist – it should be extended to include the domains of data ana-
lytics, artificial intelligence, the Internet of Things and cyber security. The challenges become 
much more complex and demanding.  

The main objectives of this Blueprint paper and the upcoming SRA are twofold: 

• To promote the development of HPC architectures and technologies as well as converged 
compute/data platforms tackling societally important problems, with a strong focus on 
commercial exploitation. 

• To improve the cost performance, system efficiency, human productivity and predictability 
of the contributing fields (simulation, big data, AI, IoT, etc.) 
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Scope and introduction 
This paper outlines a conceptual framework for the next Strategic Research Agenda (SRA-4) for 
HPC due to be delivered by the end of 2019. It offers a structured approach to the identification 
of key research objectives in the 2021 – 2022 timeframe in the area of HPC and HPDA, including 
significant interactions with Internet of Things (IoT), Cyber Physical Systems (CPS) and Artificial 
Intelligence (AI). Wherever applicable, it also provides explanations and examples to better po-
sition the context of the next Agenda document.  

The structure of this document follows a layered top-down approach as shown in Figure 1: 

 
• The top centre layer represents the political framework driving an extended use of HPC and 

innovation in technology provisioning in Europe in the forthcoming years. Under the “digital 
single market strategy”, the next Multi Annual Funding Framework 2020-2027 (MFF) of the 
European Commission sets out, amongst others, the “Digital Europe programme3” to fund 
the digital transformation beyond 2020 and “Horizon Europe” with “Thematical Clusters” 
and “Missions” containing societal challenges stimulating R&I in HPC and HPDA. Five the-
matic clusters address the full spectrum of global challenges through top-down collabora-
tive R&I activities. A small number of missions with specific goals will establish a compre-
hensive portfolio of projects cutting across several clusters. The first few missions will be 
introduced in the first strategic planning phase for Horizon Europe4. The chapter on “Soci-
etal challenges and industrial competitiveness for Europe” on page 7 gives more details. 

• The second source of drivers for future technology improvements is represented on the 
upper right side by commercial and industrial users of HPC. Especially in this category, new 
use-patterns for HPC are emerging in the context of new products and services (see chapter 
“Industrial and commercial users” on page 10 ). 

• Science has a well-established role in providing major users and in driving the architectural 
development of HPC systems. Although several of the fields covered here also are at the 

                                                                                       
3 See http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/628231/EPRS_BRI(2018)628231_EN.pdf  
4 The examples shown here are preliminary and taken from the Mazzacuto report available at  
https://ec.europa.eu/info/sites/info/files/mazzucato_report_2018.pdf  

Figure 1: A structural approach  
to derive research priorities  
for HPC technology and the  

application of that technology 
http://www.europarl.europa.eu/ 

RegData/etudes/BRIE/2018/628231/ 
EPRS_BRI(2018)628231_EN.pdf 

http://www.europarl.europa.eu/RegData/etudes/BRIE/2018/628231/EPRS_BRI(2018)628231_EN.pdf
https://ec.europa.eu/info/sites/info/files/mazzucato_report_2018.pdf
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centre of the thematical clusters and missions referred to in the Horizon Europe framework, 
it is important to acknowledge the influence of all scientific domains. 

• The next layer down (“Application and use scenarios”) translates the use-cases defined in 
the clusters/missions into application and technology use scenarios across the domains of 
“simulation”, “AI”, “Analytics” and “Internet of things (IoT)”. As argued below, these do-
mains can no longer be handled separately as they are all required to implement solutions 
to the problems of today and tomorrow.   

• HPC technology will not only be deployed in dedicated data centres in the future. “Embed-
ded HPC”, “HPC in the box”, “HPC in the loop”, “HPC in the cloud”, “HPC as a service”, “near-
to-real-time simulation” are concepts requiring new small-scale deployment environments 
for HPC, as shown in Figure 2. A federation of systems and functions with a consistent com-
munication and management mechanism across all participating systems will be required 
creating a “continuum” of computing. The layer “Deployment” describes the challenges as-
sociated with this change, where HPC functionality is now extended to clouds, fog compu-
ting and edge computing:  

- Edge computing is a distributed computing paradigm largely or completely based on 
multiple compute capabilities positioned close to the end-user or IoT (Internet of Things 
devices. This is in contrast to having all compute capability in a few, centralised Cloud 
data centres, with potentially long lines of communication to end users and devices. 
Edge computing relies on more ubiquitous use and deployment of wireless communi-
cation and is meant to alleviate the communication burden (in particular latency) by 
processing data close to data sources or consumers. Edge computing also supports ef-
fective geo-fencing of data that should not leave regulatory domains. 

- Fog computing serves as decentralised intelligence to further reduce the volume of data 
in transit between the edge and centralised centres and enabling actions close to the 
edge. With an increasing demand for “near to real-time decisions”, it is important to 
put this local intelligence in place thus reducing the load on centralized data cloud/HPC 
centres, where data analytics and modelling take place. Fog computing is a layered 
model for enabling ubiquitous access to a shared continuum of scalable computing re-
sources.  

Both fog and edge computing will profit from power-efficient compute solutions (“embed-
ded HPC”). Privacy requirements must be observed, and they will pose restrictions to data 
propagating through the network. E.g. hospitals processing patient data would probably use 
what may be considered fog nodes as they are at the edge of the cloud network, while 
mobile users use devices at the edge of the mobile network. 

• The next layer down (“Applications development: design, algorithms, methods, workflows”) 
addresses the software development aspects of the application portfolio. See chapter “Ap-
plication development challenges” on page 20 for more details. 

• The next layer outlines the technologies used to implement the IT infrastructure discussed 
above. While most of the described components, functions and features will be deployed 
in data centres, local small-scale deployments (edge/fog) will integrate the technology stack 
as well. The range of technologies covers algorithms, programming languages and tools, 
system software, architectures, hardware components, I/O and storage as well as address-
ing critical features such as reliability and energy efficiency. 

• The emergence of upstream technologies for future HPC system/component architectures 
complements the influence of the societal challenges and is expected to facilitate novel and 
superior solutions. The related chapter outlines those candidate technologies which are 
most likely to be applicable within the timeframe of Horizon Europe. See the chapter on 
Upstream technologies on page 29. 
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Figure 2 illustrates High Performance Computing as one element of a circular workflow (“HPC 
in the loop") starting with data generated at smart sensors in an IoT environment. Data is being 
locally pre-processed at the edge, relevant parts are forwarded to decentralised “fog nodes” 
close to the edge. A subset of data is then transferred for centralized Data Analytics in clouds 
or simulation and modelling in centralized HPC centres. In an increasing number of use scenar-
ios based on the concept of the “Digital Twin”5 a “twin-copy” of a physical entity is held and 
continuously updated on these central compute infrastructures. The final outcome of the loop 
is a set of optimized actions in the “Cyber Physical Entanglement” representing physical systems 
(e.g. robots, vehicles, industrial processes) interconnected in complex intelligent networks.   

  

                                                                                       
5 It is based on the idea that a digital informational construct about a physical system could be created as an entity on its own. This 
digital information would be a “twin” of the information that was embedded within the physical system itself and be linked with 
that physical system through the entire lifecycle of the system.  
 

Figure 2: 
 “HPC in the loop”  

(source HiPEAC) 
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Societal challenges and industrial competitiveness 
for Europe 
Technology development needs - first and foremost – to enable addressing grand societal chal-
lenges and enhancing industrial competitiveness. Both concepts have global implications be-
yond Europe. However, Europe can play a leading role in researching their solution, implement-
ing sustainable solutions and achieving technology leadership.  

The current Horizon-2020 programme6 had already been defined with reference to the UN’s 
2030 agenda for sustainable development. The UN agenda has led to the formulation of 17 
sustainable development goals (SDG) for our society. Horizon Europe’s novel mission-based ap-
proach7 aims to achieve these goals with actionable development projects – at which level the 
specific role of technology can be defined for each mission individually. Successful missions will 
be critical for enhancing competitiveness through more focused innovation. 

The thematic clusters on health, inclusive and secure society, digital and industry, climate, en-
ergy and mobility, food and natural resources form the central pillar on global challenges and 
industrial competitiveness in the new framework programme, and HPC-technologies will be at 
the heart of many fundamental developments and an important enabler for fulfilling missions 
addressing the grand societal challenges. On the technology side, this ambition is supported by 
the Digital Europe programme that aims to deploy technology options and solutions for achiev-
ing both global challenges and European industrial competitiveness. 

The key research sectors of societal relevance where HPC-technologies play a role are Earth-
system science, food-, bio- and life sciences, astrophysics, physics, chemistry and materials sci-
ence, as well as engineering, transport and communication. 

Examples of specific challenges are: 

• How advanced bio-medical simulations and personalised medicine can contribute to the 
well-being of our society given the apparent demographic change; 

• How combining advanced Earth-system models with the vast amount of environmental 
data can prepare society for dealing with climate and environmental change and mitigate 
the impact of extremes on health, energy, water and food resource management through 
urgent computing and data handling; 

• How materials and systems can be engineered to guarantee availability of secure, clean and 
efficient energy and smart, green and integrated transport including autonomous vehicles; 

• How society can evolve towards being inclusive, innovative and secure exploiting IoT data 
in support of multi-variable decision support. 

                                                                                       
6 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges  
7 https://ec.europa.eu/info/sites/info/files/mazzucato_report_2018.pdf  

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
https://ec.europa.eu/info/sites/info/files/mazzucato_report_2018.pdf
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Break-through requirements  
The evolution of Individual technologies and – perhaps even more so - the possibilities for com-
bining those technologies offers many opportunities for addressing societal challenges and cre-
ating economic growth in new ways. The technologies we are referring to are: “pure” HPC; 
cloud/fog/edge computing; user-driven generation and exploration of information available 
from IoT; powerful methodologies based on artificial intelligence. 

Combining diverse technological options require a more specific analysis of what the break-
through requirements are for addressing societal challenges and spawning commercial oppor-
tunities. These requirements need to include the definition of a generic framework of metrics 
for success.  

Examples for such requirements have been formulated by the PRACE Scientific Steering Com-
mittee for key science areas, however with a main focus on computing and output data han-
dling: 

• Fundamental sciences: Enhanced simulations of the dynamics of black holes and neutron 
stars. 

• Climate, weather and Earth-system sciences: Much enhanced simulations to resolve criti-
cal small-scale processes driving global atmospheric and oceanic circulation and to allow 
full-waveform seismic simulations down to frequencies affecting the stability of construc-
tion and infrastructure.  

• Life sciences: Enhanced genetic sequencing across species and for large samples, much bet-
ter resolution of the structural complexity of proteins, and automated image analysis and 
visualization. 

• Energy: Full-waveform seismic simulations down to wavelengths resolving oil and gas res-
ervoirs, and turbulence-resolving simulations of plasmas for magnetic fusion. 

• Infrastructure and manufacturing: High-resolution structural simulations of aircraft com-
ponents under stress, and the design of smart cities and an optimized transport and renew-
able energy provision. 

• Material science: Design of new materials supported by simulations of the dynamics, ther-
modynamics, heterogeneity, chemical processes and response to external factors between 
electronic and continuum scales. 

It is presently estimated that these science areas require between 10-1000 more computing 
power to fulfil their scientific ambition and to effectively support the global challenges in the 
next decade. Since technology alone cannot be expected to deliver such growth factors, the 
applications themselves need to become an integral part of a science-technology co-design pro-
cess. 

Success metrics 
These examples need to be mapped to the full breadth of IT technologies so that the added 
benefits from the co-development of new technologies can be quantified. An important ele-
ment is the time-to-solution constraint: for example, the urgency for predictive analyses in re-
sponse to environmental and demographic change (necessitating extreme computational capa-
bilities) or the urgency for developing disease diagnostics and treatment options compared with 
the less strict time constraints for fundamental research. Again, technology refers to the com-
bination of hardware, software and scientific methods with the strong impetus from AI meth-
ods.  

As a success metrics, the ability to solve the specific problems posed by the challenge ad-
dressed, and the application-specific performance and energy used to achieve this are clearly 
important. Therefore, the applications addressing grand challenges need to be translated into 
representative benchmarks at full IT-technology scale and take into account trade-offs between 
the abovementioned realisation-time requirements and technology-readiness roadmaps. Suc-
cessful technology development has to be demonstrated for each application with application-
specific metrics rather than relying on basic technology metrics, as done in the past (an example 
being Linpack performance measurements).  
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Necessary evolution of scientific methodologies and economy of 
scale 
Addressing societal challenges with IT technologies is not a mere engineering challenge because 
the term “technology” comprises hardware, software, industry practices and scientific method-
ologies. As hardware options change, software and science need to adapt, and as science re-
quirements change, hardware and software design need to adapt. Finding a near-optimum out-
come for this mutual adaptation process is a hard problem. The best-known method is to adopt 
a strict co-design process involving algorithms, software, and system and component architec-
ture. New technologies like AI methods and AI-optimized hardware and IoT data streaming offer 
new potential for scientific methodologies and workflows. Their adaptation can be intrusive 
and deviate from the classic first-principles-driven science and linear-workflow approach. A 
more flexible science-technology co-design with fast turn-around of innovation at the interface 
between science applications, engineering and computational science is clearly required, and it 
will breed new areas of knowledge and expertise for Europe. Hence, applications need to evolve 
as well to obtain the best trade-off between scientific accuracy and computational efficiency, 
also with a view at which information end-users actually require. 

Significant potential for new knowledge and expertise exists between disciplines. It is consid-
ered very important to assess overlaps between application areas, and across scientific meth-
odologies and the science-enabling technologies to exploit synergies such as injecting advanced 
developments from one discipline into another. This will also allow the improved characterisa-
tion of the boundary between general-purpose and domain-specific methodologies and tech-
nologies, and eventually produce a much more effective approach for the investment in large-
scale technology infrastructures in Europe. 

The importance of ethics 
The tremendous efforts in research and development of AI technologies and solutions and the 
resulting rapid development of AI capabilities has been one of multiple factors leading to an 
increased awareness of ethical topics in the context of the development of IT technologies. Pol-
icy makers react to this by creating new standards that need to be respected. The EU’s General 
Data Protection Regulation (GDPR) is a very prominent example. 

Ethical topics need to be considered in many different dimensions including: foresight ethics 
(identifying the potential impact of tools and methods); governance ethics (how to ethically 
manage the governance within projects and businesses); stakeholder ethics (the ethical ap-
proach to engagement with the wider stakeholder community); data ethics (in case of personal 
data); testing ethics (in case of research involving animals/humans); dual-use of HPC technolo-
gies (such as for military purposes). 

Ethical topics impact the SRA in different ways. To avoid these not being discussed until some-
thing goes wrong requires ethical aspects to be anticipated for any development of technology. 
Openly addressing such topics will also help to improve acceptance of new technologies amid 
significant scepticism as regards such new technologies, e.g. in the area of AI. While ethical 
considerations may on the one hand limit research and development, the latter can also help 
to address ethical topics. For instance, new technologies may allow for better handling of per-
sonal data and help to improve protection of data. 
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Industrial and commercial users 
Over the past 10 to 15 years, HPC was used by a selected few and only in some specific domains. 
In engineering (e.g., automotive/aero-spatial industries) HPC is used widely to simulate at high 
precision complex (multi-)physics systems, such as systems for the analysis of combustion en-
gines, aerodynamic properties, or vehicle crashworthiness. The domain of natural resources (oil 
& gas industry in particular), is another example where HPC is traditionally widely used, as well 
as for the design and testing of complex technical artefacts used in industrial production (as for 
example in the pharmaceutical industry for drug design). The financial sector too relies heavily 
on HPC for its real-time simulations.  

The typical HPC user was thus a large company, operating its own HPC centre on its premises, 
having at its disposal experts for operating the system and for running their compute intensive 
applications. The applications were either developed by specialised ISVs (e.g. for the automo-
tive sector), or developed jointly with a mostly academic open source community, or in some 
cases developed in-house and closely guarded.  

The change we observe today is mainly driven by two factors:  

• HPC as a service: HPC resources being available today “as a service” (typically proposed by 
cloud service providers), make simulation of (multi-) physical systems available to a much 
wider range of users, often in a multi-tenanted setup. In this set-up, neither ownership of 
the computing resources is required, nor highly specialised in-house competences in HPC8. 
Note that sharing an HPC infrastructure between different industrial users will not only add 
new requirements in terms of security for providing high levels of data protection and guar-
anteed isolation between users but also bring new challenges for scheduling and orchestra-
tion. 

• Data driven applications: Moreover, we see a raise in a wide range of new “data driven 
applications”, such as analysis for very large data sets and machine learning (relying on large 
data sets for the training phase), giving rise to a wide range of new applications. Two much 
discussed examples are e-mobility with autonomous vehicles and customizing medication 
and drug consumption to the personal needs of the patient. A number of sectors, examples 
being designing and operating wind turbines as well as industrial production processes, 
have started to deploy the “Digital Twin” concept: digital twins are software representa-
tions of assets and processes that are used to understand, predict, and optimize perfor-
mance in order to achieve improved business outcomes. Digital twins consist of three com-
ponents: a data model, a set of analytics or algorithms, and knowledge 9. As shown in Figure 

                                                                                       
8 The projects Fortissimo and Fortissimo-2 demonstrated that SMEs could benefit greatly from access to such resources and sup-
port to solve business problems. The Fortissimo marketplace was developed by the projects to offer such services. 
 
9 https://www.ge.com/digital/applications/digital-twin  

https://www.ge.com/digital/applications/digital-twin
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2, HPC simulation has moved “into the loop”, and becomes an indispensable part of a prod-
uct. This trend fundamentally changes the requirements on the HPC software, systems and 
integration/management. The HPC systems needs to facilitate the connection of external 
sensors/edge computing without compromising security and HPC systems protection.  

As a consequence of this transformation, the needs of the industrial users have evolved for a 
number of reasons: 

• Users today rely on the provision of HPC resources for all scales of computations and fla-
vours (Data oriented, HPC oriented). This applies not only to small users without in-house 
resources, this is also true for large companies who need a seamless integration of in-house 
capacities with external cloud-based capacities. 

• Second, a broader use of HPC across European industries means that the use of HPC must 
be available to many, even without highly specialised in-house resources. They would rely 
on services and support to guide them in how to use HPC effectively for their business and 
their purposes.  

Third, the European industry needs support in application development: to develop effective 
HPC applications is intrinsically difficult – and the adoption of such codes to new hardware (as 
for example for GPGPUs) requires deep expertise. And last but not least, access to novel and 
experimental system architectures is needed to allow users and application developers to pre-
pare their codes for the next generation of machines.  

For defining the strategic research topics for the upcoming Horizon Europe framework, the in-
put from industrial users is crucial (i) for addressing their technical needs by taking into account 
the key requirements of future industry-relevant applications, and (ii) for supporting European 
industry at large in the uptake of numerical simulations and data driven applications for their 
businesses.   
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Application and use case scenarios 
In light of the rapid evolution of technology and use cases, the term “High Performance Com-
puting (HPC)” needs to be redefined: In the past, it was synonymous with “technical computing 
using supercomputers” to model or simulate complex scientific or technical phenomena. While 
HPC will still refer to systems facilitating scaling of applications to a larger number of nodes, the 
main change is that HPC systems will not be any longer stand-alone systems but part of a larger 
e-infrastructure to release complex, efficiently managed and orchestrated workflows. It will 
concern also the interfaces of this structure with external devices (distributed and edge de-
vices), as indicated in Figure 2.  

Tight integration of capabilities across individual system boundaries and between data centres 
and local small-scale HPC systems is expected. Each component in this integrated compute, 
communication and data infrastructure has different characteristics that can (over-) simplified 
as: 

• Simulation: relatively low amount of input data, large computation requirements (mostly in 
high precision floating point representation) with tight coupling between compute nodes 
(benefits from scale-up hardware and low-latency networks) and large amount of gener-
ated data (simulation results) 

• Big Data: large amount of external input data, medium computational requirement with 
loose coupling between compute nodes (scale-out and share nothing models) and low 
amount of output data (information extracted from the input data) 

• Data stream processing: Streaming capabilities are becoming increasingly important for sci-
entific and industrial HPC applications (e.g. CERN’s Large Hadron Collider (LHC), Square Kil-
ometre Array (SKA) project, astrophysics, physical simulations, digital twins, etc) supporting 
important needs such as the ability to act on incoming data and computational steering. 
Coupling data streams produced by such experiments to computational HPC capabilities is 
an important challenge, and Big Data Computing’s near real-time processing architectures 
and stream processing capabilities hold promise i.e. to rapidly analyse high-bandwidth, 
high-throughput streaming data. 

• AI (for example, Machine Learning in training phase): large input (local) database with very 
high access rate, large amount of computation (in low precision floating point representa-
tion) and relatively low amount of output data (the weights of the newly trained Neural 
Networks, few hundreds of MB.) 

• AI (for example, Machine Learning in inference phase): medium input (depends on the ap-
plication), low processing amount (reduced precision floating point or integer) and low 
amount of generated data. 
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• AI (Reinforcement learning) such as Alpha Zero system from Deepmind: the input is low 
(e.g. rules of a game, or physical laws or constraints), the output is also low (solution), but 
the system internally generates a lot of data and computation to explore the various options 
and find a good solution. Simulation of the process to be optimized is in the loop to get an 
assessment of the quality of the solution found.  

HPC has always advanced science by delivering results only made possible by the use of cutting-
edge computer technologies. Throughout the last decade numerical computing has been grow-
ing rapidly in many directions: higher fidelity, multi-physics models; deluge of observational 
data from sensors and of simulated data; semi-automatic data analysis and post-processing; 
uncertainty qualification and AI-based models. Combining all these aspects will result in a highly 
complex application (software) architecture, currently a focus area in related research.  

In reference to Figure 1, this layer is driven by the thematic clusters and missions detailed in the 
previous chapter as well by industrial and scientific needs. The extraction of IT/HPC require-
ments out of representative and strategically important use case scenarios is necessary in order 
to drive HPC R&I in the right direction. They are key to assess new architectures or infrastruc-
ture as well as provide testbeds to research & industrial teams.  

In the context of promoting innovations for the HPC, HPDA and IoT ecosystem, the use cases 
identified must be such that we avoid alignment with technology “silos”, which would strongly 
restrict the shaping capabilities for the R&I work program. Furthermore, fully addressing the 
societal challenge can only be achieved when considering end-to-end approaches where data 
production is integrated with data analytics, machine learning, numerical simulation, data ar-
chiving as well as final use of the results. Underlying the use cases are applications relying on 
complex workflows within which individual tasks are executed on a wide variety of systems and 
whereby the complete data management cycle is addressed.  

However, many representative use case scenarios are difficult to analyse since they combine 
many heterogeneous components (e.g. relying on different software stacks) as well as different 
resources or user governance strategies. For instance, this is about applications across a feder-
ation of systems - that includes HPC centres, cloud facilities, fog and edge components, net-
works - while at the same time preserving security & privacy from end-to-end. Furthermore, 
the economics aspects of the deployment of these applications must be considered. 

As a consequence, this means facing extreme scale heterogeneity where, in the worst case, the 
common denominator may be a common governance and resource allocation policy. At a high 
level, the main technical challenges are how to achieve interoperability between the application 
workflow components, their orchestration as well as reproducibility of execution in order to 
allow debugging and ease of deployment. In addition, infrastructure management and resource 
allocation policies are also strong roadblocks to overcome. For instance, supercomputers today 
are typically deployed in a way that they become silos, with limited external connectivity, pro-
prietary access processes, relatively rigid operational models that expect users to submit batch 
jobs, and limited flexibility in terms of software stack provisioning. It is difficult to make them 
part of an application workflow that would include components deployed in the Cloud, handle 
streaming of data, for example.   

To advance the state of the art, supported uses cases must be able to show an application im-
plemented over multiple entities while preserving security and privacy properties. Further-
more, efficient deployment should be demonstrated (technically and economically). 

Mapping the relationship between Simulation, Data Analytics and Machine Learning into a real 
environment as illustrated in Figure 2 shows a loop of actions with HPC being just one element 
besides Data Analytics, the Internet of Things and in many cases a cyber physical entanglement. 
Computing systems are more and more directly controlling devices having impact on the real 
world (Cyber-Physical Systems). HPC in the loop or Digital twin approaches add timing con-
straints so that the results of simulations can be directly used for choosing the adequate control 
of the system in due (real) time, and raise the stakes of validating and guaranteeing functional 
correctness, timing and security, since faults or breaches will have wide-ranging consequences 
in the real world.  
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Workflow and capabilities 
Understanding the workflow and dataflows is of crucial importance for an analysis of real use 
cases. Each case (e.g. autonomous driving, personalised medicine, wind park operation, etc.) 
has its unique composition of basic “functional capabilities” (see Figure 3) composed into simi-
lar structures as shown in Figure 4. 

 

• The “Processing and communication capabilities” listed in Figure 3 cover all areas which 
require compute capabilities, be it in a datacentre, edge or fog node or an IoT device – each 
of them with a different application scope. For a given workflow (use-case), the individual 
processing capabilities are expected to be spread meaningfully across locations and sys-
tems. We distinguish between data capture from devices, data ingestion into a compute 
environment, the typical HPC capability of numerical simulation, and the Big Data capabili-
ties of data analysis and artificial intelligence. To address such new compute requirements, 
HPC capabilities must provide the processing capabilities for the Big Data environment, 
which includes interactive analytics as well as batch and real-time processing of data 
streams.  

• The “Technology influencing aspects” are properties that very much impact the design, im-
plementation and integration of the processing capabilities but do not directly provide any 
data processing capabilities. They must be provided by the processing infrastructure in ways 
that satisfy the end-user requirements to result in an effective and efficient solution. The 
governance of compute infrastructure and data imposes policies on the data processing. 
Security and privacy must be considered in such an environment for most use cases to com-
ply with regulatory and end-user needs. Interoperability and standards increase the trust in 
developed workflows and accelerate the adoption by users. The efficiency of a solution is 
relevant insofar that the costs of a solution limits the adoption in use-cases that yield limited 
revenue. A performant, energy and cost-efficient system maximizes industrial and commer-
cial competence by enabling novel scenarios.  

• “Support capabilities” describe crucial implementation aspects of a mixed scenario. As 
shown in Figure 4, the workflow reflects the interconnections of actions and data between 
the IoT devices, processing entities and data repositories. The identified capabilities are cur-
rently underdeveloped for the environment discussed here and require further R&D efforts.  

The orchestration of workflows and automatic and efficient deployment across the complex 
hardware-landscape provided, is required to exploit such systems. For instance, data must be 
placed and migrated intelligently to match the storage and processing capabilities of (IoT or 
edge) systems. Finally, workflows must adapt their processing capabilities dynamically depend-
ing on the input, or other external parameters like the number of users or availability of pro-
cessing capacity. This requires software layers that enable such dynamic, ad-hoc changes. 

Figure 3: 
 Categories of capabilities  

in mixed simulation, analytics, AI 
and IoT use scenarios. 
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We recognise that management procedures must be developed that deal with the distributed 
nature of computation, ownership, and conformance to standards while considering the effi-
ciency aspects. 

 

Figure 4 unfolds the loop shown in Figure 2 and shows three steps that are common to the use 
cases discussed between ETP4HPC and BDVA: in a first step, data from a multitude of real-world 
sensors or conventional sources (e.g. databases) is ingested, pre-processed and cleaned. This 
already can involve significant processing, as in situations where the analysis of correlation be-
tween independent data streams is required. All or part of the resulting data is put into storage 
for documentation and for use in improving the analysis/simulation models.  

The second step consists of an in-depth analysis of the data from step 1 – this includes anything 
from image classification to computing the next status of a complex technical twin using multi-
discipline simulation techniques. The online model encodes the analysis steps, and it can range 
from a simple rule set to a complex HPC simulation code. Part of the analysis results are again 
put into storage for later use.  

The third step is the processing of the analysis results, and the communication with human 
users or IoT devices/Cyber- Physical Systems (CPSs). Depending on the nature of the problem, 
the loop can be closed by the commands passed to a CPS effecting its sensor readings, which 
requires the update of the analysis in step 2. In the Digital twin case, the analysis in step 2 keeps 
its own state and runs in “streaming mode”, receiving updates from the real world, reconciling 
them with the CPS’s virtual model, and sending out commands to the CPS. 

The role of the “teacher loop” is very apparent for Deep Learning based analysis approaches – 
the online model at the heart of step 2 is created in a separate training phase and then made 
“live”, and for reinforcement learning, the online model is improved by assessing its perfor-
mance and rewarding/punishing certain aspects. Taken to the next step, the online model could 

Figure 4  
A typical mixed simulation and 

machine learning workflow 
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represent a simplified version of a car (for example), which is updated and extended/improved 
by a full, physically correct car model. The key idea behind splitting off the teacher loop is that 
it can be disconnected after a while (analogously to real life with teachers and pupils, once a 
certain proficiency has been achieved). The online model can then be made significantly simpler 
than, for instance, a fully physically correct six degrees of freedom driving model, reducing the 
amount of processing needed per instance and consequently reducing energy requirements.  

Data life cycle and dataflow: an example 
Understanding the necessity for a dataflow orchestration in mixed simulation and big data use 
scenarios is important.  The capacity of storage infrastructure, the increased sophistication and 
deployment of sensors, the ubiquitous availability of computer clusters, allow the development 
of new analysis techniques and real time capabilities to ingest “fresh” data during simulation.  

There are multiple scenarios:  

• Input data coming from experimentations is injected into simulation to enhance it. In this 
case, the quality of the simulation will depend on the availability of this new set of data on 
the HPC system 

• Data is produced by sensors in a streaming mode and HPC resources are used to train the 
model. The model- training frequency will depend on data source obsolescence. 

• Output or step-by-step data can be extracted from simulation for new in situ processing, 
visualisation and simulation context modification. 

For these new scenarios, we observe a need for different levels of curation (sensors producing 
non-curated data versus use of databases with curated data): 

• Unstructured data for instance issued from major scientific instruments or experimental 
facilities, which may be residing outside of supercomputer centralised facilities, will require 
non-trivial transformations before an ingestion could be realised by a simulation or Machine 
Learning or other HPDA steps. Depending on the real-time availability and quality of this 
data, the transformation and availability for simulation need a strong coordination effort 
(near real time data preparation). 

• Qualified structured data resources shared by the communities through archives, databases 
or any specifics formats accessible through the internet have a well-known preparation pro-
cess to enable their use in a simulation. The data transfer, compression process, encryption 
process could slow down the simulation workflow and could require some provisioning or 
concurrent data and simulation processing. 

Then the challenge is to add and to coordinate the integration of these new data resource types 
in end-to-end application workflows without drastically increasing storage space dedicated to 
data availability. 

For data driven application workflows, a well-balanced architecture will mostly depend on the 
efficiency of the dataflow and on the capability to reduce, filter, pre-process data close to the 
source (on edge computing devices or fog nodes). The objective is to limit network and global 
storage congestion. The pre-emption of HPC resources depends on data workflow optimisation. 

This distributed data transformation must be integrated in a Big Data life cycle model that in-
cludes activities to more closely combine data curation with the research life cycle. These activ-
ities address planning, acquiring, preparing, analysing, preserving, and discovering data, de-
scribing the data and assuring its quality. 

The relationship between scientific community data repositories and new distributed data 
workflows as well as the reproducibility in computational science are to be studied. Document-
ing data sources, experimental conditions, instruments and sensors, simulation scripts, pro-
cessing of datasets, analysis parameters, thresholds, and analysis methods ensures not only a 
much-needed transparency of the research, but also data discovery and future data use in sci-
ence.  
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Orthogonally, new HPC systems will have to consider, at the same time, where data is stored 
and how/where the same is accessed for computation. In a federated scenario, data could be 
stored across distributed Edge, Fog and possibly multiple centralized “data-centre-like” sys-
tems, e.g., reflecting the data production sites or specific access policies. Solutions to allow sim-
ulation, analytics or AI applications access data across federated and heterogeneous sites must 
be designed and built to strike the proper balance between data access performance, cost and 
consistency, while at the same time satisfying access control and privacy constraints. For exam-
ple, AI-assisted intelligent caching systems could be designed and deployed to take advantage 
of the read-only nature of many workloads (e.g., Deep Learning training or Big Data input), ei-
ther using high performance node-local storage like NVM disks or leveraging existing NAS infra-
structure. 

The design of a global infrastructure allowing one to combine external edge- or peripheral en-
vironments with a central, shared infrastructure will require the analysis of the heterogeneity 
of the entire software environment, the identification of new data sources and the quality of 
the data. The diversity of application requirements, in terms of workflow patterns and data 
distribution will define the rules for new combined data use solutions. 
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Deployment structures 
As mentioned in previous chapters, mixed simulation, data analytics and AI workflows often 
include a large ensemble of heterogeneous resources (from HPC centres to cloud facilities as 
well as edge/fog components). The BDEC project issued a survey paper10 introducing the con-
cept of “continuum computing” to define a new paradigm of converged sensor-data-compute 
needs in the era of Big Data and the Internet of Things. 

By the end of this decade, the world’s store of digital data is projected to reach 40 zettabytes 
(1021 bytes), while the number of network-connected devices (sensors, actuators, instruments, 
computers, and data stores) is expected to reach 20 billion. While these devices vary dramati-
cally in their capabilities and number, taken collectively they represent a vast “digital contin-
uum” of computing power and prolific data generators that scientific, economic, social and gov-
ernmental concerns of all kinds will want and need to utilize. The diverse set of powerful forces 
propelling the growth of this digital continuum are prompting calls from various quarters for a 
next generation network computing platform—a digital continuum platform (DCP)— for creat-
ing distributed services in a world permeated by devices and saturated by digital data. 

But experience shows how challenging the creation of such a future-defining platform is likely 
to be, especially if the goal is to maximize its acceptance and use, and thereby the size of the 
community of interoperability it supports. Also, the ability to integrate a large variety of tech-
nologies in a single workflow where the individual technology components may be deployed in 
completely different control domains needs to be further developed. 

 

                                                                                       
10 M. Asch, T. Moore, et al. Big data and extreme-scale computing: Pathways to Convergence - Toward a shaping strategy for a 
future software and data ecosystem for scientific inquiry. International Journal of High Performance Computing Applications, 32 
(4), pp. 435-479. (2018). 
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  Figure 5: 
BDEC’s view of the digital 

continuum paradigm  
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Application development challenges 
Next generation applications need to efficiently exploit new IT infrastructures, they will likely 
be much more integrated between simulation and data analytics capabilities, supported by AI 
and they will have to satisfy more demanding user requirements in terms of response time, 
flexibility and ease of use. This chapter illustrates some of the most important developments, 
new features and characteristics expected of applications in the timeframe of 2021-2017. 

The use of AI in HPC 
Combining HPC and AI techniques to produce applications that are superior in their capabilities 
and performance to “pure-breed” applications is a very hot and rapidly advancing research 
field. From humble beginnings (such as finding hidden and very intricate patterns in simulated 
and observed data), the first generation of combined applications is now emerging. At SC18, no 
less than five of six applications nominated for the highly prestigious Gordon Bell award com-
bined AI and HPC techniques, with the spectrum ranging from AI-driven preconditioning of lin-
ear systems resulting from earthquake prediction, to the use of HPC techniques to optimize 
complex neural networks (NN) topologies. In addition, the DoE Summit and Sierra systems ex-
hibited very high efficiency in both the HPC and AI realm for these applications.  

Still, careful study is required to understand which applications will potentially benefit from AI 
techniques and which will not. AI techniques and frameworks have to be improved to best fit 
into HPC applications and run on HPC systems. Finally, the combination of AI and HPC will most 
likely result in the need to support dynamic and interactive execution modes.  

Higher level abstractions  
Computing systems are becoming more complex and are also typically based on heterogeneous 
architectures, making them increasingly difficult to program efficiently while also maintaining 
portability. At the same time, applications are getting more complex, combining different mod-
ules in an often dynamic way. Higher level abstractions, e.g. in the form of domain specific lan-
guages (DSLs), are needed to increase programmer efficiency, hide the hardware complexity 
from the scientist and allow hardware independence. These high-level abstractions need to be 
efficient and optimized, including actual HW/SW co-design and allow expert users to optimize 
on lower levels.  

Tolerate latency and exploit more parallelism  
Many applications have reached the end of strong and even weak scaling and are thus not able 
to exploit the increased hardware parallelism levels available at the Exascale. At the same time, 
many algorithms require tight integration and cannot tolerate latency, a fundamental limitation 
on Exascale systems where the deepened memory hierarchy and the increased physical system 
size will introduce new levels of latency. Current latency-hiding techniques might be insufficient 
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to deal with the latency induced at the Exascale. To boost the parallelism available in applica-
tions approaches like ensemble parallelism, speculative execution, parallel-in-time iterations, 
relaxed/eventual consistency models. which have been successfully employed in some do-
mains, need to be developed for a wide variety of domains and algorithmic formulations need 
to increase their tolerance towards latency. This will also require appropriate resource manage-
ment that can deal with large ensembles of applications and allow for dynamic steering.  

Dynamic execution modes  
Only very few applications will use Exascale systems to run a single, large simulation. Instead, 
ensembles of smaller runs, workflows, and speculative execution will become more common 
on these systems. This not only requires the appropriate resource management that can deal 
with large ensembles, but also increased interactivity to allow for dynamic steering. This inter-
activity will also be needed for the convergence of HPC, data analytics and AI. Already today, 
in-situ data analysis is being used to reduce the enormous data size these large-scale applica-
tions have to deal with or to perform online visualization of (partial) results. Increasingly, this 
in-situ analysis is also being used to steer the further execution of the application, either auto-
matically or with user intervention. The increased use of AI techniques will further accelerate 
this.  

New algorithms, solvers and methods:  FP precision, data locality 
We need to revisit the algorithms, solvers, and methods used in HPC applications for Exascale. 
Many HPC applications have been using double precision floating point (FP64) by default, but 
this is particularly expensive. The selective use of DP (double=FP64)/SP(Sin-
gle=FP32)/HP(half=FP16)/BP(Google bfloat16 FP11) or some other newly proposed floating 
point format should be considered to reduce the system cost/consumption with equivalent 
overall precision of the results obtained.  

While it is comparatively easy to design hardware for reduced precision datatypes, the problem 
lies in validating which algorithms or applications can actually use these and still produce useful 
results. The numerical stability and error propagation of key HPC kernels needs to be studied, 
and automatic tools that assist developers with this menial task will be needed. The recent work 
on uncertainty quantification can be a good starting point.  

In addition, algorithms have traditionally been designed with the primary goal of reducing the 
number of operations. In Exascale hardware, however, data movement will be much more 
costly than floating point operations. A more data centric approach at all levels is thus required, 
and the existing research on communication-avoiding solvers has to be accelerated. Also, the 
current numerical schemes need to be revised and also drastically new methods such as switch-
ing from traditional numerical methods to empirical schemes should be considered. 

Democratization of HPC 
HPC is still seen as a domain of an elite of highly skilled scientists and engineers. To make the 
benefits of HPC available to a much larger circle of scientific and commercial users, applications 
have to become friendlier to users lacking specific HPC skills. This in particular includes the de-
velopment of high-level interfaces and portals that hide the underlying complexity for average 
users and providing HPC applications as a service (e.g. through HPC-enabled clouds). In addition, 
much increased training and education efforts are needed to increase the pool of highly skilled 
HPC people.  

Progress with the convergence of HPC, Big data and AI will to a large degree depend on availa-
bility of experts with competency in HPC and at least Big Data or AI; it will be imperative to 
break the “silo walls” and offer targeted education and training to the existing circle of experts 
in each of the fields, and integrated programs for students.  

                                                                                       
11 Bfloat 16 uses the 8-bit exponent of FP32 and reduces the mantissa to 7 bits.  
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Code base modernization and maintenance 
With the fast-moving hardware landscape and the development of new algorithmic formula-
tions, the maintenance of an efficient and productive application base becomes an ever more 
challenging task. Constant effort is needed to port and tune applications on new hardware (par-
ticularly SIMD, accelerators, novel memory/storage technologies), adopt them to new concepts 
(e.g. object storage, novel parallelism schemes), and include revised or changed algorithms and 
solvers. As many current HPC applications are legacy applications whose origins trace back sev-
eral decades, code modernization will be a necessity to integrate novel concepts.  
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HPC & HPDA Systems: architecture and technology 
Two orthogonal and complementary approaches laid out in this chapter can enhance the archi-
tecture and technology of future HPC systems and bring solutions to the new challenges and 
applications scenarios described above: 

• Adaptation of the technologies to new applications requirements 
• Integration of new specific architectures optimized for sub-classes of applications in general 

purpose HPC systems 

Convergence of simulation, big data and AI in the same IT continuum  
Converged HPC/HPDA/AI workloads have different characteristics from pure HPC loads and 
therefore demand additional features of the systems they run on. The systems should be able 
to cope with workload diversities, AI inspired solutions could be used for efficiently managing 
the complexity introduced. It is likely that the hardware of the system will be heterogeneous, 
using processors for computation and orchestration of the dataflows, and various accelerators, 
such as FPGAs and GPUs or their derivatives for Deep Learning. It is important to be able to 
reconfigure the data centre dynamically: elastic reconfiguration and efficient scheduling are 
potential solutions.  

To progress in this direction, some advances in four axes are needed: 

• workflow management 
• efficiency of the deployed infrastructure 
• efficiency in using this infrastructure, especially in programming it 
• features with growing importance 

Emergence of workflow management 
As seen in the previous sections, some of the toughest technical challenges are centred around 
understanding and modelling the data and workflows in the underlying multi-owner IT infra-
structure. Support capabilities such as workflow and dataflow deployment and orchestration, 
data localisation and logistics and dynamic resource allocation (compute, network, storage) 
need to be developed and integrated. 

While there will still be a clear distinction between HPC/servers and edge/embedded compu-
ting on the hardware level, software layers should allow to use different devices in a seamless 
manner, i.e. the distinction becomes somewhat opaque from a user's perspective and allow to 
form a continuum of processing and storage: data needs to be processed where it has to be for 
safety, privacy, cost or efficiency reasons, and the complete hierarchy should collaborate and 
exchange capabilities when it will be needed.  
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In advanced systems, it might be necessary to migrate the processing from and to different 
parts of the continuum, an easy migration of efficient code shall be required (even if dynamic 
migration is not required in most of the cases).  

Efficiency of the system 
The main roadblock for the development of new HPC infrastructure is its efficiency in terms of 
energy since its power budget is constrained. Even though reliability is also an important part 
of the cost of ownership (cost to replace the faulty parts and to restart operations if intermedi-
ate states are not properly saved), the main problem remains the efficiency in terms of power 
consumption.  

Closing the gap between real applications and benchmarks shall insure that the performance 
per watt ratio is relevant to evaluate, compare and tune HPC/HPDA architectures.  

Better energy efficiency will reduce thermal footprint and cooling cost at node level. At global 
level ultimately, the electricity power sizing and its associated cost limits the size of the ma-
chine; thus, higher energy efficiency allows a more powerful system for the same cost.  

There are several options to increase the efficiency of the machine, and in practice they should 
be combined: 

• “Adequate/ appropriate” computing: the idea is to adapt the accuracy of the operation to 
the needs.  For example, the learning process in deep learning does not really need double 
precision floating point operations, and GPUs are supporting directly float16 which is 
enough while decreasing the size and energy required. Some operations don’t even need 
to be exact, so operators can be simplified while being “good enough” for the requirements. 
On the other side, floating point representation can induce errors in iterative computing, 
and new formats, like UNUM, can help solving the effects like numerical instability. 

• Application specific hardware is more efficient in terms of FLOPS/Watt or Ops/Watt than 
general purpose because computing resources are tuned to the application class and their 
control is more efficient. For example, for throughput, GPUs are more efficient than general 
purpose processors, yet their compute capabilities are more limited (SIMD instead of MIMD 
execution), and programming can as a result be more difficult in the general case. This ap-
proach is described blow in the “new architecture” section. 

• To increase energy efficiency, not only processing, memory and communication should be 
optimized, but the complete supporting infrastructure as well: power supply, cooling etc. 
For example, bringing the final DC to DC converters as near as possible to the ICs will im-
prove efficiency by decreasing the path of high intensity current. 

• A challenge will be to combine different accelerators into a unified programming model. In 
terms of realization, some physical phenomena might be more adequate for simulating or 
processing data. For example, optics has an inherent large parallelism and can be used to 
accelerate processing like matrix operation, random generation or operations in the Fourier 
domain. This will be more detailed in the “upstream technologies part. 

• Storage: computation is not the only part that needs to be pushed to its limit: to be efficient, 
all elements such as communication and storage need to be improved. We see now the 
emergence of new storage, based on advances in upstream technologies (see this section 
below). Communication is also a major challenge due to its cost in energy and the increasing 
bandwidth required for new applications. Photonics was used for rack interconnect, it might 
become more interesting at board and even at chip (interposer) level. 

• In situ/in transit processing: Traditionally, in the HPC area, datasets resulting from scientific 
simulations are typically shipped to some auxiliary post-processing platforms for offline vis-
ualisation, processing and analysis, which becomes more and more costly in terms of stor-
age requirements as data volumes grow. In situ processing is a more efficient alternative, 
allowing data visualisation and analysis to happen online, as data is generated by the simu-
lations, thus reducing the volume of refined data to be stored and in consequence saving 
energy. Big Data management approaches include in situ processing capabilities that are of 
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particular interest for addressing this challenge, i.e. by bringing the computation to where 
data is located.  

Productivity of application developers 
An equally important area of efficiency concerns productivity of application developers (human 
productivity): the effort to program complex systems must be commensurate with the benefits 
gained in using those systems; in the extreme case, the most powerful computing infrastructure 
is of no use if it is “un-programmable”, in terms of complexity and/or non-standard and bespoke 
programming models or APIs. Whereas a convergence of infrastructure technologies and sys-
tems will potentially support modelling and simulation, big-data, AI and IoT communities on 
infrastructures spanning HPC-Cloud-Fog-Edge resources, the convergence of applications 
would be expected to happen at a higher level in the sense that new applications and work-
flows would encompass the methodologies, algorithms and programming paradigms of those 
areas. It is expected that the specialised applications from the different communities are un-
likely to migrate to a common programming language: while numerical simulation codes typi-
cally use compiled languages like Fortran, C and C++ with communication libraries such as MPI, 
the other fields have very different practices, such as “R” for statistics, Tensorflow or PyTorch 
for Deep Learning and some communities have moved to interpreted languages such as py-
thon). However, the growth in more complex applications and application workflows calls for 
programming environments that facilitate a combination of approaches or indeed higher-level 
abstractions/systems that provide interoperability, composability and support for automatic 
deployment of the appropriate programming paradigms and languages for application compo-
nents. Therefore, it is important to promote solutions and programming practices allowing to 
“orchestrate” a large variety of code, e.g. by exposing API outside of the codebase.   

Managing heterogeneity in an efficient way is another important factor: As explained above, 
there will be heterogeneity in the hardware, which will be a major challenge to efficiently ex-
ploit the variety of hardware resources without explicit mapping and communication done by 
the programmer (who don’t want to know the hardware). There will be also heterogeneity in 
programming environments and programming models due to the heterogeneity of program-
mers and applications. Perhaps here also AI related techniques can be used, to extract the re-
quirements from the programmers or users, and remap them efficiently onto the available 
hardware. 

Key efficiency metrics for the programming environment continue to be ease of programming; 
ease of migration for legacy application codes; code efficiency (performance); standardisation; 
portability across heterogeneous hardware resources including accelerators. Application devel-
oper productivity challenges related to this are: providing the appropriate programming lan-
guages and models for components (including streaming, on-the-fly processing and not always 
read from memory, process and store); providing software stacks below the high-level, work-
flow or specialised application programming interfaces that exploit the best practices (perfor-
mance, scalability, reliability, etc.) currently. 

Features with growing importance 
There are at least three noticeable topics that will become more and more important in future 
HPC systems. 

Predictability of the execution time  
Predictability is also a major challenge for new applications of HPC. Of course, the results should 
be reproducible, but with applications like HPC in the loop, where HPC systems will be directly 
in the loop to control real-life processes, predictability in time is important, i.e. when the results 
will be available. They should not appear when it is too late. Current approaches and methods 
are not very well designed to ensure this time predictability. However, it is clear that the re-
quirements are for HPC softer than for hard real-time systems. 

Guaranteed QoS 
Another aspect is to guarantee the Quality of Service, including availability and reliability. Here 
also, the requirements are different depending on the applications: for simulations, the results 
have to be exact, even if there is a failure of some parts of the system, and execution time 
deadline is not essential, while for real-time application, approximate results are often better 
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than missing the deadline. AI solutions often give approximate (or statistical) results, and with-
out 100% accuracy, but they can be useful to bootstrap more accurate simulations. Depending 
on the characteristics of the applications and their main criteria for defining the QoS, the system 
should be able to adapt and ensure than the “contract” of the QoS is ensured, by relaxing some 
constraints less essential. 

Security and privacy  
As HPC is becoming more and more prevalent in use cases involving personal data and critical 
systems (such as banks and hospitals), security and privacy are playing an increasingly important 
role. On the one hand, we need to consider all research aspects related to the security of HPC 
hardware and software technologies, on the other hand HPC technologies could be used to 
offer security and privacy services. We mainly focus on the first area, focusing on the security 
and privacy requirements of emerging use cases of “HPC in the loop” and “HPC in the cloud / 
as a service”. 

Today, the main challenge in in winning additional HPC users is to convince them about the 
value that HPC methods can bring to their science or commercial results. Trust issues, such as 
concerns about maintaining data privacy, integrity and security, handling regulatory compliance 
in a service-oriented environment, and enforcing service level agreements will become more 
important in the future. Concerns voiced so far are mainly related to the effectiveness and effi-
ciency of traditional governance and protection mechanisms, for example the collection of 
events by security event and information management tools or forensics in the cloud and main-
taining the security and integrity of data retained in the cloud, potentially where retained over 
many years. 

Traditional HPC cybersecurity relies on strict authentication and access control to HPC installa-
tions (based on passwords, SSL certificates and for particularly sensitive installations, two-factor 
authentication), on restricted usage rights (like f.i. not allowing instantiation of Internet con-
nections from the HPC systems), and on monitoring suspicious or abnormal activities (e.g. f.i. 
catching crypto mining applications). Data protection does mainly rely on storage and file sys-
tem access rights, plus in some cases encrypted storage. Data operated upon by HPC workloads 
is typically un-encrypted. Rights and responsibilities of users are laid down in a signed user 
agreement.  

The fast evolution of new use cases and deployment models is posing significant new chal-
lenges. Use of HPC in the Cloud or of HPC services requires full use of strong AAA (Authentica-
tion/Authorization/Auditing) techniques, such as trust certificates. The introduction of identity 
as a service (IaaS) with identity data potentially spread across multiple, different trust silos fur-
ther complicates the HPC service chain. As a consequence, security can no longer rely solely on 
a set of static system configurations defined by a human administrator -- an ongoing adaptive 
process in which policy-based techniques are used to provide automated configurations to dy-
namically handle security requests and events is now required.  

HPC services will likely be based on a range of trust agreements, identity management options, 
and compliance mechanisms to ensure that other parties are adequately enforcing privacy and 
security. The security management will follow the feedback loop already in use for network and 
systems management, which includes monitoring, analysis, planning, and execution steps.   

One of the main problems in the future Cloud and Edge use cases is not assurance of individual 
services one by one, but rather end-to-end (E2E) assurance, where we have to deal with services 
that offer their security assurances as well as assess the security of their sub-services (including 
storage or computing services). We need common frameworks which enable providers to ad-
vertise their security rules and events and allows customers to continuously monitor the actual 
security of a service. 

New architectures  
Today standard processors and GPU accelerators are based on a Von Neumann architecture 
where a controlled execution applies operations onto data that are stored in registers (fed by 
caches fed by memory). This architecture is very flexible, but it can be costly in terms of tran-
sistor, data paths and energy compared to what is needed for an application. It implies a lot of 
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movement and duplications of data, which is not efficient (bringing data from external memory 
is 3 orders of magnitude more energy demanding than a floating-point operation on those 
data). There is a research path to propose architectures that will be more efficient for some 
class of problems. Some of these new architectures can be implemented using standard CMOS 
technology or providing opportunities to introduce new technologies that will be more efficient 
than CMOS (see chapter “Upstream technologies” on page 35). Some concepts of new archi-
tectures are generic (see below dataflow or IMC) or targeted specific class of algorithms (see 
below neuromorphic, graph and simulated annealing). 

The integration of new architectures with standard ones into heterogenous systems is facili-
tated by the emergence of “open processor interconnects”12 which allows high performance 
and coherent communication between processors, accelerators and memory subsystems. 

Dataflow 
In dataflow architectures, data moves between modules that perform the computation on the 
data. You do not have any program counter that controls the execution of the instructions as in 
Von Neumann architecture. Deep Learning architecture (see below neuromorphic architecture) 
can be implemented as a specific dataflow architecture (the main operations are matrix based). 
The investigation of dataflow architectures is linked to FPGA (Field Programmable Gate Array) 
as most of the ideas have not led to the tape out of specific circuits but have been tested and 
implemented with FPGA. 

With the slowdown of standard processors performance increase, development of data flow 
architectures can provide an alternative to deliver this performance increase. The development 
of reconfigurable architectures (e.g. Intel CSA Configurable Spatial Accelerator) and progress 
toward flexible reconfigurable FPGA will be an asset for implementing data flow architectures.  

IMC/PIM (In Memory Computing; Processor In Memory) 
These architectures couple the storage with some computing capabilities. The idea is that bring-
ing the computation to the memory will be cheaper in resources than moving data to the com-
puting units. Most the time this approach is mixed with a standard architecture to allow com-
putation on several data. 

The architecture is also related to the development of Non-Volatile Memory (see also next 
chapter) and appealing as long as the cost of the in-memory computation is low. 

Neuromorphic 
The development of AI, and especially applications using Deep Learning techniques, has led to 
a huge interest for neuromorphic architectures that are inspired by a theoretical model of a 
neuron. This architecture can be used for AI tasks but can also be viewed as a generic classifi-
cation function or a function approximation. 

As more and more applications (or a part of an application) are mapped to this paradigm, it is 
worth to develop specific circuits that implement only the operations and data paths mandatory 
for this architecture. Several examples already exist as Google’s Tensor Processing Unit chip 
(TPU) or Fujitsu’s Deep Learning Unit chip (DLU). These efforts have not exploited all the possi-
ble options and have not developed all the interested features of the architecture, so research 
in this area is still valuable. 

We can distinguish various kind of possibilities: 

1. Using classical digital arithmetic, but designing more specialized architectures (examples: 
TPU and DLU) 

2. Using another way of coding information, like “spikes” as used by human brain 

3. Using « physics » to make computation (e.g. Ohms law for products and Kirchhoff law for 
summation; see section “Analog computing” on page 31).  

                                                                                       
12 Examples are the Gen-Z and CCIX consortia or the OpenCAPI, NVlink, AMBA and Intel CXL (Compute Express Link) interconnects. 
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Of course, the approaches can be combined. Typically, most people call “neuromorphic” the 
approaches using 2), because it is closer to the way the nervous system communicates.  

An important aspect is that this architecture is a good candidate to introduce alternatives to 
CMOS. 

Graph computing 
Graphs play an important role in data representation and in some AI or optimisation problems. 
As standard processors have poor performance due the non-regular access to data, developing 
a specific architecture can be relevant. 

Simulated annealing 
Simulated annealing is a method to solve complex optimization problems. It can be imple-
mented by software on classical Von Neumann processors, but you can also design an ASIC that 
will significantly speed-up the computation by mapping directly the variables and their interac-
tions and by providing a hardware based random generator. 

This approach has been implemented by Fujitsu with its “Digital Annealing” processor. This pro-
ject has developed a standard CMOS ASIC and a software stack to map the optimization prob-
lem to the circuit. 

Other efforts use quantum devices (see Upstream technologies section) to target the same class 
of problems (this approach requires cryogenic operation). 
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Upstream technologies 
Significant investments are done in R&D on next- or even further technology generations not 
directly linked to HPC, but to a broader use in computing and data processing. For some, a clear 
deployment within the next years can be foreseen, like components for neuromorphic compu-
ting or “in memory computing” (covered in chapter “New architectures” on page 26). For others 
options their commercial exploitation is not yet obvious, but they deserve attention today, as a 
path for their utilization (e.g. quantum accelerators) needs to be addressed now. In this chapter, 
the options are presented starting from the ones in continuity with the current state of the art 
to the most disruptive ones. 

Enhancements of current CMOS technologies 

CMOS scaling 
Even if we are close to the limit of CMOS scaling, there is still room for improvement in this 
domain. The leading foundries (TSMC, Intel, Samsung) are investigating for at least two more 
technology nodes compared to their current technologies. This could provide a way to put 
roughly about 4 times more transistor in the same surface of silicon as of today. However, this 
scaling is at the cost of very expensive equipment (e.g. Extreme ultraviolet lithography - EUV or 
EUVL), and the power density of those technologies is still not known, perhaps limiting the num-
ber of devices active at the same moment on the die. It should also be noticed that even labelled 
with the same name (e.g. 7nm), all technology nodes are not equivalent. 

CMOS scaling is also related to the evolution of the structure of the transistor. After FDSOI (Fully 
Depleted Silicon on Insulator) and FinFet, the structure of the transistor could be based on sili-
con nanowires. 

2.5D/3D stacking 
2.5D/3D stacking provide a way to reduce latency and energy and to avoid package bandwidth 
bottleneck when we want several chips to communicate together. 2.5 D stacking is the concept 
of small dies (called chiplets) integrated on a common substrate (the interposer) that can be 
organic, passive silicon, active silicon or using photonic technologies. 3D stacking is the stacking 
of layers of integrated circuits on top of each other. It can be done either by wafer to wafer, 
chip to wafer stacking, or by monolithic 3D which allow a finer granularity (down to the level of 
transistors). HPC is already benefiting from this technology with the first HPC systems using high 
bandwidth memory (HBM or HMC) and processor manufacturers (e.g. AMD, Fujitsu and others) 
have 2.5D in their roadmap. The boost in memory bandwidth is a great improvement for 
memory bound applications and a must for architectures with accelerators that require this 
kind of bandwidth to deliver their performance. 2.5D also allows to mix chiplets with various 
technologies, and for example, with active interposers, having the power conversions inte-
grated “in the chip”, providing a global better energy efficiency. 
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It can also be a path for production of hybrid packages mixing chips of different architectures 
or even chips manufactured with different technologies. Nevertheless stacking “compute” chips 
with a higher heat dissipation than memory chips leads to thermal problems that today limit 
the number of chips that could be put in a package. 

“High end” computing is more and more important for the automotive market (Advanced Driver 
Assistance Systems (ADS) and self-driving) and might be a drive for having European actors in 
2.5 D and integration of complex systems on dies or interposers. 

The European EPI (European Processor Initiative) plans to use 2.5 D technology. 

Hybrid of CMOS and other technologies: NVMs, silicon photonics 

NVMs 
Different technologies are being developed to propose Non-Volatile Memory. Besides the ex-
isting NAND, resistive memory (memristor), phase change memory (PCM), metal oxide resistive 
random-access memory (RRAM or ReRAM), conductive bridge random access memory 
(CBRAM) and Spin-transfer torque magnetic random access memory (STT-RAM) are interesting 
technologies. The developments in this domain have several impacts for HPC. The energy to 
retrieve data is decreased, the latency to read the data is reduced and the density can be in-
creased (especially with solutions implementing multi-states storage for each cell). 

NVM also play a role in providing easy implementation of the IMC/PIM architecture when com-
pute elements can be associated as in Memristive Computing. 

Silicon photonics 
Silicon photonics can be used either to compute or to provide interconnect between computing 
elements. 

Compute 
The properties of light can be used to perform computation. For example, the interaction of 
lights of which the phase has been modulated according to inputs can produce operation over 
these inputs. This idea can be used to implement neuromorphic architecture where the main 
operation is a scalar product. 

This approach is promising but several steps are still to be achieved: assessment of the value 
proposal in term of energy efficiency and industrialization path of the technology. 

Another path is to use the massive parallelism of optics to perform complex operation (typically 
where the complexity is not a linear increase versus the size of the problem). An example is the 
system proposed by the start-up LightOn, integrated in an OVH cloud server (see section ”Ana-
log computing“ on page 31). 

Interconnect 
Photonics is already used for long distance communication in HPC systems (electrons are easy 
to create and interface, they have attenuation with the distance (Ohm’s law), while photons are 
energy demanding for creation and interfacing but have low attenuation with the distance). The 
technology is also appealing for rack level communication. But perhaps the most interesting 
aspect will be at package level with the development of active interposer with embedded silicon 
photonics network between chips or chiplets. The bandwidth and the energy efficiency can be 
increased compared to current CMOS solutions.  

New solutions more efficient than CMOS 
CMOS has been such an industrial success story that it has reduced the effort on alternative 
solutions to implement transistor or computing elements. With the end of CMOS progress more 
emphasis will be put on these other options even if it is still to prove they will be able to deliver 
more computing performance than CMOS. 
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Superconducting 
With the use of superconducting material, the expectation, based on the zero resistivity of the 
interconnects, is that power consumption could be up to two orders of magnitude lower than 
that of classical CMOS based supercomputers. 

Nevertheless, superconducting circuits have still to overcome several drawbacks as density, 
switching time, interface with external systems or noise reduction to be seen as a potential 
solution for HPC. Most of the time the implementation uses Josephson junctions and so has the 
same disadvantages as analogic computing. 

Magnetoelectric and spin-orbit MESO 
Researchers from Intel and the University of California, Berkeley have proposed a new category 
of logic and memory devices based on magnetoelectric and spin-orbit materials. These so-called 
“MESO” devices will be able to support five times the number of logic circuits in the same space 
as CMOS transistors. Compared to CMOS the switching energy is better (by a factor of 10 to 30), 
switching voltage is lower (by a factor of 5) and logic density is enhanced (by a factor of 5). In 
addition, its non-volatility enables ultralow standby power. 

This path is promising even if the roadblocks for industrialization are still difficult to assess. 

Memristive devices 
Besides the uses of the resistive memory for NVM and analog neuromorphic architectures, 
memristive devices can be interesting to implement logic gates and to compute. Even if the 
switching time may be slower than CMOS, they can provide a better energy efficiency. The in-
tegration of memory into logic allows to reprogram the logic, providing low power reconfigura-
ble components and can reduce energy and area constraints in principle due to the possibility 
of computing and storing in the same device (computing in memory). Memristive devices can 
also be arranged in parallel networks to enable massively parallel computing. 

Other materials 
There is some research done on new materials that could lead to new ways to compute. To 
name some of those we have carbon nanotubes, graphene or diamond transistors. Neverthe-
less, at this stage of the research, it is too early to assess whether these options will propose a 
valuable solution for HPC systems.  

Analog computing 
We call analog computing when a physical (or chemical) process is used to perform calculation. 
(An analog computer or analogue computer is a type of computer that uses the continuously 
changeable aspects of physical phenomena such as electrical, mechanical, or hydraulic quanti-
ties to model the problem being solved. – Wikipedia) 

Optical systems 
Optical systems can be used to compute some functions thank to light properties and optical 
devices like lens. This approach is an extremely energy efficient way compared to traditional 
computers. This technology cannot suit every application but a number of algorithms as scalar 
products, convolution-like computations (e.g. FFT, derivatives and correlation pattern match-
ing), are naturally compatible. Some demonstration has been made by the EsCAPE project with 
the computation of spectral transforms by an optical system. The precision of the results can 
be a problem if the spectral transform is the input of a subsequent algorithm needing high res-
olution. Nevertheless, this method is well suited for correlation detection, sequence alignment 
test or pattern matching applications. 

Optical system has also been used to implement reservoir computing. Reservoir computing and 
Liquid State Machines are models to solve classification problems and can be seen as “part” of 
neuromorphic architecture. Nevertheless, as this approach is often coupled with research to 
implement this model with analogic optical computing, it is integrated in this section.  
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Other options 
Other options are possible as using electrical or thermal systems to find solutions of some dif-
ferential equation problems. 

New computing paradigm: quantum computing 
Quantum computing is a new paradigm where quantum properties are used to provide a sys-
tem with computing capacity. Today research in this field can be split in two categories: 

• The “universal” quantum computers based on qubit and gates performing operation on 
these qubits. It uses two quantum properties, superposition (capacity to be at the same 
time in a superposition of 2 states) and entanglement (capacity to link the state of an ele-
ment to the measure made on another element). From these properties, a mathematical 
model of universal quantum computer has been developed. In this model a system of qubits 
can be put in a state that represents the superposition of all the values of the computed 
function (i.e. this system has in “parallel” computed the values of a function for all the 2N 
inputs). 

• The quantum annealers, or quantum simulator, mainly represented by the Dwave machine, 
which use quantum physics to escape from local minima in optimization functions using 
quantum fluctuations. This class of machines is limited to problems that can be modelized 
as minimization of function, like the travelling salesman, flow optimization, molecular sim-
ulation etc.  

Most of the efforts target the first approach. Nevertheless, developing a physical system that 
behaves like the “universal” model is at the level of research and will need to solve hard prob-
lems such as the decoherence of the qubits, a reliable measurement system, error correction 
and the NxN interconnection between the qubits. 
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Conclusions and outlook 
 

The deployment of “High-Performance Computing” is undergoing a significant change and the 
term ‘HPC’ no longer applies to only supercomputers in large datacentres but also a compute 
infrastructure supporting simulation, modelling and data analysis in a digital computing contin-
uum, as outlined in the chapter on “Deployment structures”. Furthermore, core HPC technolo-
gies and methodologies are being used to enable concurrent processing to permeate all levels 
of that digital computing continuum.  

Research on both HPC applications as well as on HPC technology will expand from the current 
fields deploying HPC solutions to adjacent fields to address AI, Data Analytics and IoT-related 
challenges. This will influence the selection and definition of research priorities in the next SRA 
and this can only be effective and meaningful as the result of a true interdisciplinary effort. 

Several workshops and collaborative sessions are planned throughout 2019. The analysis of a 
diverse set of “digital continuum use scenarios” will play a significant role in determining the 
research focal points for the next SRA. 

Ultimately, the recommendations given in the next Agenda will serve as input to the research 
and innovation advisory process assisting the EuroHPC Joint Undertaking in the definition of its 
R&D&I work programme for the period 2021-2024 (and beyond).           
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Appendix 

Glossary 
 

AI Artificial Intelligence IMC/PIM In Memory Computing; Processor In Memory) 
AIOTI Alliance for the Internet of Things Innovation ISV Independent Software Vendor 
AMBA Advanced Microcontroller Bus Architecture IT Information Technology 
BDEC Big Data and Extreme-scale Computing MB Mega Byte 
BDVA Big Data Value Association MFF Multiannual Financial Framework  
CBRAM conductive bridge random access memory  MIMD  multiple instruction, multiple data 
CMOS Complementary Metal-Oxide-Semiconductor MRAM Magnetic RAMs 
CoE Centre of Excellence (for Computing Applications) MW  megawatt 
CPS Cyber- Physical System NAND resistive memory (memristor) 
CSA Configurable Spatial Accelerator NN  neural network  
CXL Compute Express Link NVM Non-Volatile Memory 
DCP digital continuum platform  OpenCAPI  

Open Coherent Accelerator Processor Interface 
DoE Department of Energy OxRAM oxide based resistive memory 
DPU data processing unit PCM phase change memory,  
DSL domain-specific language PCRAM Phase Change RAM 
E2E end-to-end PRACE Partnership for Advanced Computing in Europe 
EC European Commission QoS Quality of Service 
EPI European Processor Initiative R&D Research and Development 
ETP4HPC European Technology Platform for High Performance 

Computing 
R&I Research and Innovation 

EU European Union RAM Random-Access Memory 
EXDCI European Extreme Data and Computing Initiative RRAM or ReRAM  

metal oxide resistive random-access memory 
FFT Fast Fourier Transformation SC Supercomputing Conference 
FLOP floating point operations SDG  sustainable development goals 
FP Framework Programme / floating point SIMD single instruction, multiple data 
FPGA Field Programmable Gate Array SME Small and Medium-Sized Enterprise 
GDPR EU General Data Protection Regulation SRA  Strategic Research Agenda 
GPGPU general-purpose GPU - a graphics processing unit 

(GPU) 
STT-RAM Spin-transfer torque magnetic random-access 

memory  
HBM high bandwidth memory SW  software 
HiPEAC High Performance Embedded Architectures and Com-

pilers 
TCO  total cost of ownership 

HMC Hybrid Memory Cube TPU  tensor processing unit 
HPC High-Performance Computing TSMC  Taiwan Semiconductor Manufacturing Company 
HPDA High-Performance Data Analytics UN  United Nations 
HW hardware YE Year End 
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