An Exascale Programming, Multi-objective Optimisation and Resilience Management Environment based on **Nested Recursive Parallelism**

User-Level API

Core API

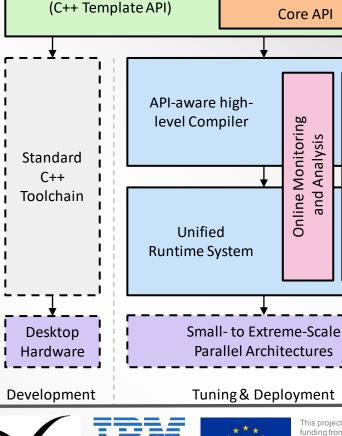
Online Monitoring

and Analysis

Applications

AllScale will focus research in key areas to address critical areas of difficulty:

- Isolated parallelization that hampers global optimization
- Flat parallelism unfit for large-scale HPC
- Optimisation limited to single objectives
- Manual coordination to exploit all levels of parallelism
- Increased probability of errors in Exascale computing
- Post-mortem analysis of non-functional system behavior


AllScale will achieve a core set of objectives within the lifetime of the project:

- Single-source-to-anyscale application development
- Exploit the potential of nested recursive parallelism for HPC
- Multi-objective optimization for execution time, energy and resource usage
- Unified runtime system
- Mitigating increase risk of HW failures
- Scalable Online analysis of non-functional system behavior

AllScale follows three design principles:

- Use a single parallel programming model to target all the levels of hardware parallelism available in extreme scale computing systems.
- Leverage the inherent advantages of nested recursive parallelism for adaptive parallelisation, automatic resilience management and auto-tuning for multiple optimisation objectives.
- Provide a programming interface that will be fully compatible with widely used industry standards and existing toolchains.

www.allscale.eu

Generic Parallel Primitives

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 671603

Resilience Management